Skip to main content

New Concepts in Cardio-Oncology

  • Chapter
  • First Online:
Breast Cancer Research and Treatment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 188))

  • 436 Accesses

Abstract

Cancer and cardiovascular disease are the two major causes of morbidity and mortality in worldwide. Discovering new therapeutic agents for the management of breast cancer (BC) has increased the numbers of cancer survivors but with the risk of cardiovascular adverse events (CV-AEs). All drugs can potentially damage the cardiovascular system, with different types of clinical manifestations from ischemic myocardial disease to vasculitis, thrombosis or pericarditis. An early detection of CV-AEs guarantees an earlier treatment, which is associated with better outcomes. Cardio-oncology field enlarged its studies to improve prevention, monitoring and treatment of all cardiotoxic manifestations related to old or modern oncological agents. A multidisciplinary approach with a close partnership between oncologists and cardiologists is essential for an optimal management and therapeutic decision-making. The aim of this chapter is to review all types of cardiotoxic manifestations related to novel and old agents approved for treatment of BC patients including chemotherapy, anti-HER2 agents, cyclin-dependent kinase 4/6 inhibitors, PolyADP-ribose polymerase (PARP) inhibitors, antiangiogenic drugs and immunotherapy. We also focused our discussion on prevention, monitoring, treatment, and management of CV-AEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritchie H (2018) Causes of death. Published online at OurWorldInData.org. https://ourworldindata.org/causes-of-death

  2. Balkwill F, Mantovani A (2010) Cancer and inflammation implications for pharmacology and therapeutics. Clin Pharmacol Ther 87:401–406. https://doi.org/10.1038/clpt.2009.312

    Article  CAS  PubMed  Google Scholar 

  3. Gukkestard L, Aukrust P (2005) Review of trials in chronic heart failure showing broad spectrum anti-inflammatory approaches. Am J Cardiol 95:17C-23C. https://doi.org/10.1016/j.amjcard.2005.03.008

    Article  CAS  Google Scholar 

  4. Reina-Couto M, Carcalho J, Valente MJ et al (2014) Impaired resolution of inflammation in human chronic heart failure. Eur J Clin Invest 44:527–538

    Article  CAS  PubMed  Google Scholar 

  5. Curigliano G, Cardinale D, Dent S et al (2016) Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin 66:309–325. https://doi.org/10.3322/caac.21341

    Article  PubMed  Google Scholar 

  6. Nicolò E, Zagami P, Curigliano G (2020) Antibody-drug conjugates in breast cancer: the chemotherapy of the future? Curr Opin Oncol 32(5):494–502. https://doi.org/10.1097/CCO.0000000000000656

    Article  CAS  PubMed  Google Scholar 

  7. Herrmann J (2020) Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol 17(8):474–502. https://doi.org/10.1038/s41569-020-0348-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar M, Thangavel C, Becker RC et al (2020) Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity. Cancers (Basel) 13(1):86. https://doi.org/10.3390/cancers13010086

    Article  CAS  PubMed  Google Scholar 

  9. McGowan JV, Chung R, Maulik A et al (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31(1):63–75. https://doi.org/10.1007/s10557-016-6711-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mamoshina P, Rodriguez B, Bueno-Orovio A (2021) Toward a broader view of mechanisms of drug cardiotoxicity. Cell Rep Med 2(3):100216. https://doi.org/10.1016/j.xcrm.2021.100216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cardinale D, Colombo A, Bacchiani G et al (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131(22):1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777

    Article  CAS  PubMed  Google Scholar 

  12. Serrano JM, González I, Del Castillo S et al (2015) Diastolic dysfunction following anthracycline-based chemo-therapy in breast cancer patients: incidence and predictors. Oncologist 20(8):864–872. https://doi.org/10.1186/s12885-017-3772-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Narayan HK, Finkelman B, French B et al (2017) Detailed echocardiographic phenotyping in breast cancer patients: associations with ejection fraction decline, recovery, and heart failure symptoms over 3 years of follow-up. Circulation 135(15):1397–1412. https://doi.org/10.1161/CIRCULATIONAHA.116.023463

    Article  PubMed  PubMed Central  Google Scholar 

  14. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879. https://doi.org/10.1002/cncr.11407

    Article  CAS  PubMed  Google Scholar 

  15. Dranitsaris G, Rayson D, Vincent M et al (2008) The development of a predictive model to estimate cardiotoxic risk for patients with metastatic breast cancer receiving anthracyclines. Breast Cancer Res Treat 107(3):443–450. https://doi.org/10.1007/s10549-007-9803-5

    Article  CAS  PubMed  Google Scholar 

  16. Lyon AR, López-Fernández T, Couch LS, et al (2022) on behalf of the ESC scientific document group. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European hematology association (EHA), the European society for therapeutic radiology and oncology (ESTRO) and the International cardio-oncology society (IC-OS). Eur Heart J

    Google Scholar 

  17. Curigliano G, Lenihan D, Fradley M et al (2020) Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol 31(2):171–190. https://doi.org/10.1016/j.annonc.2019.10.023

    Article  CAS  PubMed  Google Scholar 

  18. Macedo AVS, Hajjar LA, Lyon AR et al (2019) Efficacy of dexrazoxane in preventing anthracycline cardiotoxicity in breast cancer. JACC CardioOncol 1(1):68–79. https://doi.org/10.1016/j.jaccao.2019.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Caspani F, Tralongo AC, Campiotti L et al (2021) Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Intern Emerg Med 16(2):477–486. https://doi.org/10.1007/s11739-020-02508-8. Epub 2020

    Article  PubMed  Google Scholar 

  20. Bosch X, Rovira M, Sitges M et al (2013) Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol 61(23):2355–2362. https://doi.org/10.1016/j.jacc.2013.02.072

    Article  CAS  PubMed  Google Scholar 

  21. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, Jr, et al (2018) Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol 71(20):2281–2290. https://doi.org/10.1016/j.jacc.2018.02.049

    Article  CAS  PubMed  Google Scholar 

  22. Ma Y, Bai F, Qin F et al (2019) Beta-blockers for the primary prevention of anthracycline-induced cardiotoxicity: a meta-analysis of randomized controlled trials. BMC Pharmacol Toxicol 20(1):18. https://doi.org/10.1186/s40360-019-0298-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kheiri B, Abdalla A, Osman M et al (2018) Meta-analysis of carvedilol for the prevention of anthracycline-induced cardiotoxicity. Am J Cardiol 122(11):1959–1964. https://doi.org/10.1016/j.amjcard.2018.08.039

    Article  CAS  PubMed  Google Scholar 

  24. Jensen BV, Skovsgaard T, Nielsen SL et al (2002) Functional monitoring of anthracycline cardiotoxicity: aprospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 13:699–709. https://doi.org/10.1093/annonc/mdf132

    Article  CAS  PubMed  Google Scholar 

  25. Cardinale D, Colombo A, Lamantia G et al (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213–220. https://doi.org/10.1016/j.jacc.2009.03.095.d

    Article  CAS  PubMed  Google Scholar 

  26. Cardinale D, Ciceri F, Latini R et al (2018) Anthracycline-induced cardiotoxicity: a multicenter randomized trial comparing two strategies for guiding prevention with enalapril: the International cardio oncology society-one trial. Eur J Cancer 94:126–137. https://doi.org/10.1016/j.ejca.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  27. Alizadehasl A, Ghadimi N, Kaveh S et al (2021) Prevention of anthracycline-induced cardiotoxicity: a systematic review and network meta-analysis. Int J Clin Pharm 43(1):25–34. https://doi.org/10.1007/s11096-020-01146-6

    Article  CAS  PubMed  Google Scholar 

  28. Lyon AR, Dent S, Stanway S et al (2020) Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the cardio-oncology study group of the heart failure association of the european society of cardiology in collaboration with the international cardio-oncology society. Eur J Heart Fail 22(11):1945–1960. https://doi.org/10.1002/ejhf.1920

    Article  PubMed  Google Scholar 

  29. Osman M, Elkady M (2017) A Prospective study to evaluate the effect of paclitaxel on cardiac ejection fraction. Breast Care (Basel) 12(4):255–259. https://doi.org/10.1159/000471759

    Article  PubMed  Google Scholar 

  30. Arbuck SG, Strauss H, Rowinsky E, et al (1993) A reassessment of cardiac toxicity associated with Taxol. J Natl Cancer Inst Monographs (15):117–130

    Google Scholar 

  31. Rowinsky EK, McGuire WP, Guarnieri T et al (1991) Cardiac disturbances during the administration of taxol. J Clin Oncol 9:1704–1712

    Article  CAS  PubMed  Google Scholar 

  32. EMA drug dossier. Summary of product characteristics. http://mri.cts-mrp.eu/download/NL_H_0118_004_FinalSPC.pdf

  33. Zamorano JL, Lancellotti P, Rodriguez Muñoz D et al (2016) ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European society of cardiology (ESC). Eur Heart J 37(36):2768–2801. https://doi.org/10.1093/eurheartj/ehw211

    Article  PubMed  Google Scholar 

  34. Untch M, Jackisch C, Schneeweiss A et al (2016) Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, phase 3 trial. Lancet Oncol 17(3):345–356. https://doi.org/10.1016/S1470-2045(15)00542-2

    Article  CAS  PubMed  Google Scholar 

  35. EMA drug dossier. Summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_it.pdf

  36. Joshi AM, Prousi GS, Bianco C et al (2021) Microtubule inhibitors and cardiotoxicity. Curr Oncol Rep 23(3):30. https://doi.org/10.1007/s11912-021-01014-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. EMA drug dossier. Summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/paxene-epar-product-information_en.pdf

  38. Madeddu C, Deidda M, Piras A et al (2016) Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown) 17(Suppl 1):S12–S18. https://doi.org/10.2459/JCM.0000000000000376

    Article  CAS  PubMed  Google Scholar 

  39. Shimoyama M, Murata Y, Sumi K et al (2001) Docetaxel induced cardiotoxicity. Heart 86:219. https://doi.org/10.1136/hrt.86.2.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ho M, Mackey J (2014) Presentation and management of docetaxel-related adverse effects in patients with breast cancer. Cancer Manage Res. 6:253–259. https://doi.org/10.2147/CMAR.S40601

    Article  CAS  Google Scholar 

  41. Trapani D, Zagami P, Nicolò E et al (2020) Management of cardiac toxicity induced by chemotherapy. J Clin Med 9(9):2885. https://doi.org/10.3390/jcm9092885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basselin C, Fontanges T, Descotes J et al (2011) 5-Fluorouracil-induced Tako-Tsubo-like syn-drome. Pharmacotherapy 31:226. https://doi.org/10.1592/phco.31.2.226

    Article  PubMed  Google Scholar 

  43. Gianni M, Dentali F, Lonn E (2009) 5 flourouracil-induced apical ballooning syndrome: a case report. Blood Co-agul. Fibrinolysis. 20:306–308. https://doi.org/10.1097/MBC.0b013e328329e431

    Article  CAS  Google Scholar 

  44. Grunwald MR, Howie L, Diaz LA (2012) Takotsubo cardiomyopathy and fluorouracil: case report and review of the literature. J Clin Oncol 30:e11–e14. https://doi.org/10.1200/JCO.2011.38.5278

    Article  PubMed  Google Scholar 

  45. Jensen SA, Sørensen JB (2006) Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or cape-citabine. Cancer Chemother Pharmacol 58:487–493. https://doi.org/10.1007/s00280-005-0178-1

    Article  CAS  PubMed  Google Scholar 

  46. Polk A, Vaage-Nilsen M, Vistisen K et al (2013) Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev 39:974–984. https://doi.org/10.1016/j.ctrv.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  47. Polk A, Shahmarvand N, Vistisen K et al (2016) Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: a retrospective study of 452 consecutive patients with metastatic breast cancer. BMJ Open. https://doi.org/10.1136/bmjopen-2016-012798

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kosmas C, Kallistratos MS, Kopterides P et al (2008) Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol 134:75–82. https://doi.org/10.1007/s00432-007-0250-9

    Article  CAS  PubMed  Google Scholar 

  49. EMA drug dossier. Summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/abraxane-epar-product-information_en.pdf

  50. EMA drug dossier. Summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/taxotere-epar-product-information_en.pdf

  51. EMA drug dossier. Summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/xeloda-epar-product-information_en.pdf

  52. Izzedine H, Mathian A, Amoura Z, Ng JH, Jhaveri KD (2022) Anticancer drug-induced capillary leak syndrome. Kidney Int Rep 7(5):945–953. https://doi.org/10.1016/j.ekir.2022.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dhesi S, Chu MP, Blevins G et al (2013) Cyclophosphamide-induced cardiomyopathy: a case report, review, and recommendations for management. J Investig Med High Impact Case Rep 1(1):2324709613480346. https://doi.org/10.1177/2324709613480346

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goldberg MA, Antin JH, Guinan EC et al (1986) Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood 68:1114–1118. https://doi.org/10.1182/blood.V68.5.1114.1114

    Article  CAS  PubMed  Google Scholar 

  55. Braverman AC, Antin JH, Plappert MT et al (1991) Cyclophosphamide cardiotoxicity in bone marrow transplan-tation: a prospective evaluation of new dosing regimens. J Clin Oncol 9:1215–1223

    Article  CAS  PubMed  Google Scholar 

  56. Morandi MP, Ruffini RPA, Benvenuto BGM et al (2001) Serum cardiac troponin I levels and ECG/ echo monitoring in breast cancer patients undergoing high- dose (7 g/m2) cyclophosphamide. Bone Marrow Transpl 28:277–282

    Article  CAS  Google Scholar 

  57. Gottdiener JS, Appelbaum FR, Ferrans VJ et al (1981) Cardiotoxicity associated with high-dose cyclophospha-mide therapy. Arch Intern Med 141:758–763. https://doi.org/10.1001/archinte.1981.00340060066015

    Article  CAS  PubMed  Google Scholar 

  58. Lanza O, Ferrera A, Reale S et al (2022) New insights on the toxicity on heart and vessels of breast cancer therapies. Med Sci (Basel) 10(2):27. https://doi.org/10.3390/medsci10020027

    Article  CAS  PubMed  Google Scholar 

  59. EMA drug dossier. Summary of product characteristics. https://mri.cts-mrp.eu/human/downloads/DE_H_5507_001_FinalPI_1of4.pdf

  60. Lapeyre-Mestre M, Gregoire N, Bugat R et al (2004) Vinorelbine-related cardiac events: a meta-analysis of ran-domized clinical trials. Fundam Clin Pharmacol 18:97–105. https://doi.org/10.1046/j.0767-3981.2003.00215

    Article  CAS  PubMed  Google Scholar 

  61. Lorusso V, Giota F, Bordonaro R et al (2014) Non-pegylated liposome-encapsulated doxorubicin citrate plus cy-clophosphamide or vinorelbine in metastatic breast cancer not previously treated with chemotherapy: a multicenter phase III study. Int J Oncol 45:2137–2142. https://doi.org/10.3892/ijo.2014.2604

    Article  CAS  PubMed  Google Scholar 

  62. EMA drug dossier. Summary of product characteristics. https://mri.cts-mrp.eu/Human/Downloads/NL_H_2814_003_FinalSPC.pdf

  63. Oun R, Rowan E (2017) Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? Eur J Pharmacol 15(811):125–128. https://doi.org/10.1016/j.ejphar.2017.05.063

    Article  CAS  Google Scholar 

  64. Ferroni P, Della-Morte D, Palmirotta R et al (2011) Platinum-based compounds and risk for cardiovascular toxicity in the elderly: role of the antioxidants in chemoprevention. Rejuvenation Res 14(3):293–308. https://doi.org/10.1089/rej.2010.1141

    Article  CAS  PubMed  Google Scholar 

  65. EMA drug dossier. Summary of product characteristics. https://mri.cts-mrp.eu/Human/Downloads/IS_H_0272_003_FinalPI.pdf

  66. Krasniqi E, Pizzuti L, Valerio MR, et al (2021) Second-line eribulin in triple negative metastatic breast cancer patients. Multicentre Retrospective Study: The TETRIS Trial. Int J Med Sci 18(10):2245–2250. https://doi.org/10.7150/ijms.54996

  67. Mougalian SS, Copher R, Kish JK et al (2018) Clinical benefit of treatment with eribulin mesylate for metastatic triple-negative breast cancer: Long-term outcomes of patients treated in the US community oncology setting. Cancer Med 7(9):4371–4378. https://doi.org/10.1002/cam4.1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Adamo V, Ricciardi GRR, Giuffrida D et al (2019) Eribulin mesylate use as third-line therapy in patients with metastatic breast cancer (VESPRY): a prospective, multicentre, observational study. Ther Adv Med Oncol 19(11):1758835919895755. https://doi.org/10.1177/1758835919895755

    Article  CAS  Google Scholar 

  69. EMA drug dossier. Summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/halaven-epar-product-information_en.pdf

  70. EMA drug dossier. Summary of product characteristics. https://www.accessdata.fda.gov/drugsatfda_docs/label/2002/20388S014lbl.pdf

  71. Corti C, Giugliano F, Nicolò E et al (2021) Antibody-drug conjugates for the treatment of breast cancer. Cancers 13(12):2898. https://doi.org/10.3390/cancers13122898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vogel CL, Cobleigh MA, Tripathy D et al (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726. https://doi.org/10.1200/JCO.2002.20.3.719

    Article  CAS  PubMed  Google Scholar 

  73. Cocco E, Lopez S, Santin AD et al (2019) Prevalence and role of HER2 mutations in cancer. Pharmacol Ther 199:188–196. https://doi.org/10.1016/j.pharmthera.2019.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  75. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182. https://doi.org/10.1126/science.3798106

    Article  CAS  PubMed  Google Scholar 

  76. Swain SM, Miles D, Kim SB et al (2020) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol 21(4):519–530. https://doi.org/10.1016/S1470-2045(19)30863-0

    Article  CAS  PubMed  Google Scholar 

  77. Fiúza M (2009) Cardiotoxicity associated with trastuzumab treatment of HER2+ breast cancer. Adv Ther 26(Suppl 1):S9-17. https://doi.org/10.1007/s12325-009-0048-z

    Article  CAS  PubMed  Google Scholar 

  78. Ewer MS, Ewer SM (2010) Troponin I provides insight into cardiotoxicity and the anthracycline-trastuzumab interaction. J Clin Oncol 28(25):3901–3904. https://doi.org/10.1200/jco.2010.30.6274

    Article  CAS  PubMed  Google Scholar 

  79. Guenancia C, Lefebvre A, Cardinale D et al (2016) Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: a systematic review and meta-analysis. J Clin Oncol 34(26):3157–3165. https://doi.org/10.1200/JCO.2016.67.4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Serrano C, Cortés J, De Mattos-Arruda L et al (2012) Trastuzumab-related cardiotoxicity in the elderly: a role for cardiovascular risk factors. Ann Oncol 23(4):897–902. https://doi.org/10.1093/annonc/mdr348

    Article  CAS  PubMed  Google Scholar 

  81. Joensuu H, Kellokumpu-Lehtinen PL, Bono P et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354(8):809–820. https://doi.org/10.1056/NEJMoa053028

    Article  CAS  PubMed  Google Scholar 

  82. Perez EA, Suman VJ, Davidson NE et al (2011) Sequential versus concurrent trastuzumab in adjuvant chemotherapy for breast cancer. J Clin Oncol 29(34):4491–4497. https://doi.org/10.1200/JCO.2011.36.7045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353(16):1659–1672. https://doi.org/10.1056/NEJMoa052306

    Article  CAS  PubMed  Google Scholar 

  84. Slamon D, Eiermann W, Robert N et al (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365(14):1273–1283. https://doi.org/10.1056/NEJMoa0910383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cameron D, Piccart-Gebhart MJ, Gelber RD et al (2017) 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. The Lancet 389(10075):1195–1205. https://doi.org/10.1016/s0140-6736(16)32616-2

    Article  CAS  Google Scholar 

  86. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684. https://doi.org/10.1056/NEJMoa052122

    Article  CAS  PubMed  Google Scholar 

  87. Moja L, Tagliabue L, Balduzzi S, et al (2012) Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev (4):CD006243. https://doi.org/10.1002/14651858.CD006243

  88. Romond EH, Jeong JH, Rastogi P et al (2012) Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 30(31):3792–3799. https://doi.org/10.1200/JCO.2011.40.0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ezaz G, Long JB, Gross CP et al (2014) Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc 3(1):e000472. https://doi.org/10.1161/JAHA.113.000472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ewer SM, Ewer MS (2008) Cardiotoxicity profile of trastuzumab. Drug Saf 31(6):459–467. https://doi.org/10.2165/00002018-200831060-00002

    Article  CAS  PubMed  Google Scholar 

  91. Nowsheen S, Viscuse PV, O’Sullivan CC et al (2017) Incidence, diagnosis, and treatment of cardiac toxicity from trastuzumab in patients with breast cancer. Curr Breast Cancer Rep 9(3):173–182. https://doi.org/10.1007/s12609-017-0249-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cardinale D, Colombo A, Torrisi R et al (2010) Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol 28(25):3910–3916. https://doi.org/10.1200/JCO.2009.27.3615

    Article  CAS  PubMed  Google Scholar 

  93. Zardavas D, Suter TM, Van Veldhuisen DJ et al (2017) Role of troponins I and T and N-terminal prohormone of brain natriuretic peptide in monitoring cardiac safety of patients with early-stage human epidermal growth factor receptor 2-positive breast cancer receiving trastuzumab: a herceptin adjuvant study cardiac marker substudy. J Clin Oncol 35(8):878–884. https://doi.org/10.1200/JCO.2015.65.7916

    Article  CAS  PubMed  Google Scholar 

  94. Gianni L, Eiermann W, Semiglazov V et al (2010) Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375(9712):377–384. https://doi.org/10.1016/S0140-6736(09)61964-4

    Article  CAS  PubMed  Google Scholar 

  95. Joensuu H, Bono P, Kataja V et al (2009) Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHer Trial. J Clin Oncol 27(34):5685–5692. https://doi.org/10.1056/NEJMoa053028

    Article  CAS  PubMed  Google Scholar 

  96. Bria E, Cuppone F, Fornier M et al (2008) Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: the dark side of the moon? A meta-analysis of the randomized trials. Breast Cancer Res Treat 109(2):231–239. https://doi.org/10.1007/s10549-007-9663-z

    Article  CAS  PubMed  Google Scholar 

  97. Seidman A, Hudis C, Pierri MK et al (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20(5):1215–1221. https://doi.org/10.1200/JCO.2002.20.5.1215

    Article  CAS  PubMed  Google Scholar 

  98. Halyard MY, Pisansky TM, Dueck AC et al (2009) Radiotherapy and adjuvant trastuzumab in operable breast cancer: tolerability and adverse event data from the NCCTG Phase III Trial N9831. J Clin Oncol 27(16):2638–2644. https://doi.org/10.1200/JCO.2008.17.9549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gulati G, Heck SL, Ree AH et al (2016) Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2x2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J 37:1671–1680. https://doi.org/10.1093/eurheartj/ehw022. Epub 2016 Feb 21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Swain SM, Baselga J, Kim SB et al (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372(8):724–734. https://doi.org/10.1056/NEJMoa1413513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baselga J, Cortés J, Kim SB et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119. https://doi.org/10.1056/NEJMoa1113216

    Article  CAS  PubMed  Google Scholar 

  102. Schneeweiss A, Chia S, Hickish T et al (2013) Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol 24(9):2278–2284. https://doi.org/10.1093/annonc/mdt182

    Article  CAS  PubMed  Google Scholar 

  103. Rugo H, Im S, Wright G, et al (2019) Abstract #1000: SOPHIA primary analysis: A phase 3 (P3) study of margetuximab (M) + chemotherapy (C) versus trastuzumab (T) + C in patients (pts) with HER2+ metastatic (met) breast cancer (MBC) after prior anti-HER2 therapies (Tx). SABCS; May 31–June 4. Chicago, Illinois

    Google Scholar 

  104. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743. https://doi.org/10.1056/NEJMoa064320

    Article  CAS  PubMed  Google Scholar 

  105. Perez EA, Koehler M, Byrne J et al (2008) Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc 83(6):679–686. https://doi.org/10.1016/S1043-321X(09)79433-0

    Article  PubMed  Google Scholar 

  106. Blackwell KL, Burstein HJ, Storniolo AM et al (2010) Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol 28(7):1124–1130. https://doi.org/10.1200/JCO.2008.21.4437

    Article  CAS  PubMed  Google Scholar 

  107. Valachis A, Nearchou A, Polyzos NP et al (2013) Cardiac toxicity in breast cancer patients treated with dual HER2 blockade. Int J Cancer 133(9):2245–2252. https://doi.org/10.1002/ijc.28234

    Article  CAS  PubMed  Google Scholar 

  108. Eiger D, Pondé NF, Agbor-Tarh D et al (2020) Long-term cardiac outcomes of patients with HER2-positive breast cancer treated in the adjuvant lapatinib and/or trastuzumab treatment optimization trial. Br J Cancer 122:1453–1460. https://doi.org/10.1038/s41416-020-0786-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Murthy RK, Loi S, Okines A et al (2020) Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med 382(7):597–609. https://doi.org/10.1056/NEJMoa1914609

    Article  CAS  PubMed  Google Scholar 

  110. Burstein HJ, Sun Y, Dirix LY et al (2010) Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol 28(8):1301–1307. https://doi.org/10.1200/JCO.2009.25.8707

    Article  CAS  PubMed  Google Scholar 

  111. Awada A, Colomer R, Inoue K et al (2016) Neratinib plus paclitaxel vs trastuzumab plus paclitaxel in previously untreated metastatic ERBB2-positive breast cancer: the NEfERT-T randomized clinical trial. JAMA Oncol 2(12):1557–1564. https://doi.org/10.1001/jamaoncol.2016.0237

    Article  PubMed  Google Scholar 

  112. Chan A, Delaloge S, Holmes FA et al (2016) Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17(3):367–377. https://doi.org/10.1016/S1470-2045(15)00551-3

    Article  CAS  PubMed  Google Scholar 

  113. Hurvitz SA, Dirix L, Kocsis J et al (2013) Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 31(9):1157–1163. https://doi.org/10.1200/JCO.2012.44.9694

    Article  CAS  PubMed  Google Scholar 

  114. Verma S, Miles D, Gianni L et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367(19):1783–1791. https://doi.org/10.1056/NEJMoa1209124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Krop IE, Suter TM, Dang CT et al (2015) Feasibility and cardiac safety of trastuzumab emtansine after anthracycline-based chemotherapy as (neo)adjuvant therapy for human epidermal growth factor receptor 2-positive early-stage breast cancer. J Clin Oncol 33(10):1136–1142. https://doi.org/10.1200/JCO.2014.58.7782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. von Minckwitz G, Huang CS, Mano MS et al (2019) Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 380(7):617–628. https://doi.org/10.1056/NEJMoa1814017

    Article  Google Scholar 

  117. FDA (2013) Ado-trastuzumab emtansine, for injection. United States Prescribing Information. US National Library of Medicine. Assessed 25 Sept 2021

    Google Scholar 

  118. Modi S, Saura C, Yamashita T et al (2020) Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med 382(7):610–621. https://doi.org/10.1056/NEJMoa1914510

    Article  CAS  PubMed  Google Scholar 

  119. Fam-trastuzumab deruxtecan [package insert]. Daiichi Sankyo, Basking Ridge (2019)

    Google Scholar 

  120. Montagna E, Zagami P, Masiero M et al (2021) Assessing predictors of tamoxifen nonadherence in patients with early breast cancer. Patient Prefer Adherence 15(15):2051–2061. https://doi.org/10.2147/PPA.S285768

    Article  PubMed  PubMed Central  Google Scholar 

  121. Frasor J, Stossi F, Danes JM et al (2004) Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells. Cancer Res 64:1522–1533. https://doi.org/10.1158/0008-5472.can-03-3326

    Article  CAS  PubMed  Google Scholar 

  122. Sahebkar A, Serban MC, Penson P et al (2017) The effects of tamoxifen on plasma lipoprotein(a) concentrations: systematic review and meta-analysis. Drugs 77:1187–1197. https://doi.org/10.1007/s40265-017-0767-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Howell A, Cuzick J, Baum M et al (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365(9453):60–62. https://doi.org/10.1016/S0140-6736(04)17666-6

    Article  CAS  PubMed  Google Scholar 

  124. Regan MM, Price KN, Giobbie-Hurder A et al (2011) Interpreting breast international group (BIG) 1–98: a randomized, double-blind, phase III trial comparing letrozole and tamoxifen as adjuvant endocrine therapy for postmenopausal women with hormone receptor-positive, early breast cancer. Breast Cancer Res 13(3):209. https://doi.org/10.1186/bcr2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Van De Velde CJ, Rea D, Seynaeve C et al (2011) Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 377:321–331. https://doi.org/10.1016/S0140-6736(10)62312-4

    Article  CAS  PubMed  Google Scholar 

  126. Amir E, Seruga B, Niraula S et al (2011) Toxicity of adjuvant endocrine therapy inpostmenopausal breast cancer patients: a systematic review and meta-analysis. J Natl Cancer Inst 103:1299–1309. https://doi.org/10.1093/jnci/djr242

    Article  CAS  PubMed  Google Scholar 

  127. Fung K, Imeson J, Cusano F (2018) The clinical significance of QT prolongation associated with tamoxifen: a review of the literature. J Oncol Pharm Pract 24(7):525–530. https://doi.org/10.1177/1078155217720006

    Article  CAS  PubMed  Google Scholar 

  128. Cuzick J, Sestak I, Baum M et al (2010) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11(12):1135–1141. https://doi.org/10.1016/S1470-2045(10)70257-6

    Article  CAS  PubMed  Google Scholar 

  129. Ruhstaller T, Giobbie-Hurder A, Colleoni M et al (2019) Adjuvant letrozole and tamoxifen alone or sequentially for postmenopausal women with hormone receptor-positive breast cancer: long-term follow-up of the BIG 1–98 trial. J Clin Oncol 37(2):105–114. https://doi.org/10.1200/JCO.18.00440

    Article  CAS  PubMed  Google Scholar 

  130. Khosrow-Khavar F et al (2016) Cardiotoxicity of aromatase inhibitors and tamoxifen in postmenopausal women with breast cancer: a systematic review and meta-analysis of randomized controlled trials. Ann Oncol 28:487–496

    Article  PubMed Central  Google Scholar 

  131. Matthews AA, Peacock Hinton S, Stanway S et al (2021) Endocrine therapy use and cardiovascular risk in postmenopausal breast cancer survivors. Heart 107:1327–1335. https://doi.org/10.1136/heartjnl-2020-317510

    Article  CAS  PubMed  Google Scholar 

  132. Di Leo A, Guy Jerusalem G, Petruzelka L, et al (2010) Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor–positive advanced breast cancer. J Clin Oncol 28:30: 4594–4600. https://doi.org/10.1200/JCO.2010.28.8415

  133. Di Leo A, Jerusalem G, Petruzelka L, et al (2014) Final overall survival: fulvestrant 500 mg vs 250 mg in the randomized CONFIRM trial. J Natl Cancer Inst. 106(1):djt337. https://doi.org/10.1093/jnci/djt337

  134. Chia S, Gradishar W, Mauriac L et al (2008) Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J Clin Oncol 26(10):1664–1670. https://doi.org/10.1200/JCO.2007.13.5822

    Article  CAS  PubMed  Google Scholar 

  135. Fassl A, Geng Y, Sicinski P (2022) CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375(6577):eabc1495. https://doi.org/10.1126/science.abc1495

  136. Hortobagyi GN, Stemmer SM, Burris HA et al (2019) Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol 30(11):1842. https://doi.org/10.1093/annonc/mdz215.Erratumfor:AnnOncol.2018Jul1;29(7):1541-1547.doi:10.2147/CMAR.S250632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Slamon DJ, Neven P, Chia S et al (2018) Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol 36(24):2465–2472. https://doi.org/10.1200/JCO.2018.78.9909

    Article  CAS  PubMed  Google Scholar 

  138. Lu YS, Im SA, Colleoni M, et al (2022) Updated overall survival of ribociclib plus endocrine therapy versus endocrine therapy alone in pre- and perimenopausal patients with HR+/HER2- advanced breast cancer in MONALEESA-7: a phase III randomized clinical trial. Clin Cancer Res

    Google Scholar 

  139. Tripathy D, Im SA, Colleoni M et al (2018) Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol 19(7):904–915. https://doi.org/10.1016/S1470-2045(18)30292-4

    Article  CAS  PubMed  Google Scholar 

  140. Verma S, Bartlett CH, Schnell P, et al (2016) Palbociclib in combination with fulvestrant in women with hormone receptor-positive/HER2-negative advanced metastatic breast cancer: detailed safety analysis from a multicenter, randomized, placebo-controlled, phase III study (PALOMA-3). Oncologist 21. https://doi.org/10.1634/theoncologist.2016-0097

  141. Cristofanilli M, Turner NC, Bondarenko I, et al (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 17(4):425–439. https://doi.org/10.1016/S1470-2045(15)00613-0. Epub 2016 Mar 3. Erratum in: Lancet Oncol 17 (4):e136. Erratum in: Lancet Oncol 17 (7):e270. https://doi.org/10.1016/S1470-2045(15)00613-0

  142. Santoni M, Occhipinti G, Romagnoli E et al (2019) Different cardiotoxicity of palbociclib and ribociclib in breast cancer: gene expression and pharmacological data analyses, biological basis, and therapeutic implications. BioDrugs 33:613–620. https://doi.org/10.1007/s40259-019-00382-1

    Article  CAS  PubMed  Google Scholar 

  143. Rugo HS, Huober J, García-Sáenz JA, et al (2021) Management of abemaciclib-associated adverse events in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: safety analysis of MONARCH 2 and MONARCH 3. Oncologist 26(1):e53–e65. https://doi.org/10.1002/onco.13531. Epub 2020 Oct 9. Erratum in: Oncologist 26(3):e522. https://doi.org/10.1002/onco.13531

  144. West MT, Smith CE, Kaempf A et al (2021) CDK 4/6 inhibitors are associated with a high incidence of thrombotic events in women with breast cancer in real-world practice. Eur J Haematol 106(5):634–642. https://doi.org/10.1111/ejh.13590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fradley MG, Nguyen N, Chen Y, et al (2020) Cardiovascular toxicities of cyclin dependent kinase (cdk) 4/6 inhibitors in metastatic breast cancer patients. Circulation 142:A16720. https://doi.org/10.1161/circ.142.suppl_3.16720

  146. Bebero KGM, Marayag EJA, Regala E et al (2019) The effect of addition of cyclin-dependent kinase 4 & 6 (CDK 4/6) inhibitor to endocrine therapy in the cardiovascular toxicity in advanced breast cancer patients: a systematic review and meta-analysis. J Glob Oncol 5(suppl):134–134. https://doi.org/10.1200/JGO.2019.5.suppl.134

    Article  Google Scholar 

  147. Im YH, Karabulut B, Lee KS et al (2021) Safety and efficacy of everolimus (EVE) plus exemestane (EXE) in postmenopausal women with locally advanced or metastatic breast cancer: final results from EVEREXES. Breast Cancer Res Treat 188:77–89. https://doi.org/10.1007/s10549-021-06173-z

    Article  CAS  PubMed  Google Scholar 

  148. Rugo HS, André F, Yamashita T, et al (2020) Time course and management of key adverse events during the randomized phase III SOLAR-1 study of PI3K inhibitor alpelisib plus fulvestrant in patients with HR-positive advanced breast cancer. Annal Oncol 31(8):1001–1010. ISSN 0923-7534. https://doi.org/10.1016/j.annonc.2020.05.001

  149. Thomas K, Germain M, Loch MM (2022) S.U.G.A.R: a case to outline tactics for the prevention of alpelisib-induced hyperglycemia. J Investig Med High Impact Case Rep 10:23247096221105249. https://doi.org/10.1177/23247096221105249

  150. Lu Z, Wu CY, Jiang YP, et al (2012) Suppression of phosphoinositide 3-kinase signaling and alteration of multiple ion currents in drug-induced long QT syndrome. Sci Transl Med 4(131):131ra50. https://doi.org/10.1126/scitranslmed.3003623

  151. Zagami P, Carey LA (2022) Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 8(1):95. https://doi.org/10.1038/s41523-022-00468-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Litton JK, Rugo HS, Ettl JK (2018) Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 79:753–763. https://doi.org/10.1056/NEJMoa1802905

  153. Robson ME, Tung N, Conte P, et al (2019) OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol 1;30(4):558–566. https://doi.org/10.1093/annonc/mdz012

  154. Mirza MR, Monk BJ, Herrstedt J et al (2016) Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375:2154–2164. https://doi.org/10.1056/NEJMoa1611310

    Article  CAS  PubMed  Google Scholar 

  155. Segan L, Beekman A, Parfrey S et al (2019) PARP inhibitor-induced torsades de pointes in long QT syndrome: a case report. Eur Heart J Case Rep 4(1):1–5. https://doi.org/10.1093/ehjcr/ytz230

    Article  PubMed  PubMed Central  Google Scholar 

  156. Swaisland H, Plummer R, So K et al (2016) Olaparib does not cause clinically relevant QT/QTc interval prolongation in patients with advanced solid tumours: results from two phase I studies. Cancer Chemother Pharmacol 78(4):775–784. https://doi.org/10.1007/s00280-016-3124-5

    Article  CAS  PubMed  Google Scholar 

  157. Deres L, Bartha E, Palfi A, et al (2014) PARP-inhibitor treatment prevents hypertension induced cardiac remodeling by favorable modulation of heat shock proteins, Akt-1/GSK-3β and several PKC isoforms. PLoS One 11;9(7):e102148. https://doi.org/10.1371/journal.pone.0102148

  158. Varga ZV, Ferdinandy P, Liaudet L et al (2015) Drug induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol 309(9):H1453–H1467. https://doi.org/10.1152/ajpheart.00554.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. LaFargue CJ, Dal Molin GZ, Sood AK et al (2019) Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol 20(1):e15–e28. https://doi.org/10.1016/S1470-2045(18)30786-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Perrotta I, Brunelli E, Sciangula A et al (2011) iNOS induction and PARP-1 activation in human atherosclerotic lesions: an immunohistochemical and ultrastructural approach. Cardiovasc Pathol 20:195–203

    Article  CAS  PubMed  Google Scholar 

  161. Dobbin SJH, Petrie MC, Myles RC et al (2021) Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond) 135(1):71–100. https://doi.org/10.1042/CS20200305

    Article  CAS  PubMed  Google Scholar 

  162. Abdel-Qadir H, Ethier JL, Lee DS et al (2017) Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treat Rev 53:120–127

    Article  CAS  PubMed  Google Scholar 

  163. Touyz RM, Herrmann J (2018) Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. npj Precision Onc 2:13. https://doi.org/10.1038/s41698-018-0056-z

  164. Tomaszewska B, Muzolf M, Grabysa R et al (2021) Cardiotoxicity of antiangiogenic drugs: causes and mechanisms. OncoReview 11(1(41):12–8. https://doi.org/10.24292/01.OR.122030321

  165. EMA drug dossier. Summary of product characteristics. https://mri.cts-mrp.eu/Human/Downloads/DE_H_0803_001_FinalPI_1of2.pdf

  166. Schmid P, Cortes J, Pusztai L et al (2020) Pembrolizumab for early triple-negative breast cancer. N Engl J Med 382:810–821. https://doi.org/10.1056/NEJMoa1910549

    Article  CAS  PubMed  Google Scholar 

  167. Schmid P, Rugo HS, Adams S, et al (2020) IMpassion130 Investigators. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 21(1):44–59. https://doi.org/10.1016/S1470-2045(19)30689-8

  168. Johnson DB, Balko JM, Compton ML et al (2016) Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 375:1749–1755. https://doi.org/10.1056/NEJMoa1609214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mahmood SS, Fradley MG, Cohen JV et al (2018) Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 71:1755–1764. https://doi.org/10.1016/j.jacc.2018.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Onderko L, Bennett E, Francis S (2022) Cardiotoxicity from immune checkpoint inhibitors: myocarditis. J Maine Med Center 4(1):12. https://doi.org/10.46804/2641-2225.1104

  171. Gong J, Drobni ZD, Zafar A et al (2021) Pericardial disease in patients treated with immune checkpoint inhibitors. J Immunother Cancer 9(6):e002771. https://doi.org/10.1136/jitc-2021-002771

    Article  PubMed  PubMed Central  Google Scholar 

  172. Goff Jr DC, Lloyd-Jones DM, Bennett G, et al (2013) ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2935e2959. https://doi.org/10.1161/01.cir.0000437741.48606.98

  173. Chow EJ, Baker KS, Lee SJ et al (2014) Influence of conventional cardiovascular risk factors and lifestyle characteristics on cardiovascular disease after hematopoietic cell transplantation. J Clin Oncol 32(3):191–198. https://doi.org/10.1200/JCO.2013.52.6582

    Article  PubMed  Google Scholar 

  174. Martín García A, Mitroi C, Mazón Ramos P, et al (2021) Stratification and management of cardiovascular risk in cancer patients. A consensus document of the SEC, FEC, SEOM, SEOR, SEHH, SEMG, AEEMT, AEEC, and AECC. Rev Esp Cardiol (Engl Ed). 74(5):438–448. English, Spanish. https://doi.org/10.1016/j.rec.2020.11.020

  175. Tini G, Cuomo A, Battistoni A et al (2022) Baseline cardio-oncologic risk assessment in breast cancer women and occurrence of cardiovascular events: the HFA/ICOS risk tool in real-world practice. Int J Cardiol 15(349):134–137. https://doi.org/10.1016/j.ijcard.2021.11.059

    Article  Google Scholar 

  176. Xue K, Gu JJ, Zhang Q, Liu X et al (2016) Cardiotoxicity as indicated by LVEF and troponin T sensitivity following two anthracycline-based regimens in lymphoma: results from a randomized prospective clinical trial. Oncotarget 7(22):32519–32531. https://doi.org/10.18632/oncotarget.8685

    Article  PubMed  PubMed Central  Google Scholar 

  177. Pavo N, Raderer M, Hülsmann M et al (2015) Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart 101(23):1874–1880. https://doi.org/10.1136/heartjnl-2015-307848

    Article  CAS  PubMed  Google Scholar 

  178. López-Sendón J, Álvarez-Ortega C, Zamora Auñon P et al (2020) Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: the CARDIOTOX registry. Eur Heart J 41(18):1720–1729. https://doi.org/10.1093/eurheartj/ehaa006

    Article  PubMed  Google Scholar 

  179. D’Ascenzi F, Anselmi F, Fiorentini C et al (2021) The benefits of exercise in cancer patients and the criteria for exercise prescription in cardio-oncology. Eur J Prev Cardiol 28(7):725–735. https://doi.org/10.1177/2047487319874900

    Article  PubMed  Google Scholar 

  180. Murray J, Bennett H, Bezak E et al (2022) The role of exercise in the prevention of cancer therapy-related cardiac dysfunction in breast cancer patients undergoing chemotherapy: systematic review. Eur J Prev Cardiol 29(3):463–472. https://doi.org/10.1093/eurjpc/zwab006

    Article  PubMed  Google Scholar 

  181. Guglin M, Krischer J, Tamura R et al (2019) Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J Am Col Cardiol. 73:2859–2868. https://doi.org/10.1016/j.jacc.2019.03.495

    Article  CAS  Google Scholar 

  182. Pituskin E, Mackey J, Koshman S et al (2016) Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-BREAST): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J clin Oncol 35:870–877. https://doi.org/10.1200/JCO.2016.68.7830

    Article  PubMed  Google Scholar 

  183. Akpek M, Ozdogru I, Sahin O et al (2015) Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail 17:81–89. https://doi.org/10.1002/ejhf.196

    Article  CAS  PubMed  Google Scholar 

  184. Ganatra S, Nohria A, Shah S et al (2019) Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: a consecutive case series. Cardiooncology. 29(5):1. https://doi.org/10.1186/s40959-019-0036-7

    Article  Google Scholar 

  185. Lenihan DJ, Stevens PL, Massey M, et al (2016) The utility of point-of-care biomarkers to detect cardiotoxicity during anthracycline chemotherapy: a feasibility study. J Card Fail 22:433–438. https://doi.org/10.1016/j.cardfail.2016.04.003

  186. Thavendiranathan P, Poulin F, Lim KD et al (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 63:2751–2768. https://doi.org/10.1016/j.jacc.2014.01.073

    Article  PubMed  Google Scholar 

  187. Patel RP, Parikh R, Gunturu KS (2021) Cardiotoxicity of immune checkpoint inhibitors. Curr Oncol Rep 23(7):79. https://doi.org/10.1007/s11912-021-01070-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Zagami .

Editor information

Editors and Affiliations

Ethics declarations

G.C. reported honoraria for speaker’s engagements for: Roche, Seattle Genetics, Novartis, Lilly, Pfizer, Foundation Medicine, NanoString, Samsung, Celltrion, BMS and MSD; honoraria for providing consultancy for: Roche, Seattle Genetics and NanoString; honoraria for participating in Advisory Boards for: Roche, Lilly, Pfizer, Foundation Medicine, Samsung, Celltrion and Mylan; honoraria for writing engagements for: Novartis and BMS; honoraria for participation in Ellipsis Scientific Affairs Group; and institutional research funding for conducting phase I and II clinical trials for: Pfizer, Roche, Novartis, Sanofi, Celgene, Servier, Orion, AstraZeneca, Seattle Genetics, AbbVie, Tesaro, BMS, Merck Serono, Merck Sharp Dome, Janssen-Cilag, Philogen, Bayer, Medivation and Medimmune, all outside the submitted work. PZ, EN, CC, and CV do not report potential conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zagami, P., Nicolò, E., Corti, C., Valenza, C., Curigliano, G. (2023). New Concepts in Cardio-Oncology. In: Al Jarroudi, O., El Bairi, K., Curigliano, G. (eds) Breast Cancer Research and Treatment. Cancer Treatment and Research, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-031-33602-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33602-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33601-0

  • Online ISBN: 978-3-031-33602-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics