Skip to main content

Advertisement

Log in

Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis

  • CE-Systematic reviews and meta-analysis
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Anthracyclines are extensively used in oncologic patients, in particular for breast cancer and hematological malignancies. Cardiac injury is a potentially dangerous side effect of these drugs. In this systematic review, we analyzed published randomized controlled trials (RCTs) to assess if potential cardioprotective drugs (i.e., renin–angiotensin–aldosterone system [RAAS] blockers and β-blockers) may prevent heart damage by anthracyclines. Studies were identified by electronic search of MEDLINE and EMBASE database until August 2020. The impact of cardioprotective drugs to prevent anthracyclines-induced cardiac injury was expressed as mean difference (MD) or odds ratio (OR) and 95% confidence intervals (95% CI). Statistical heterogeneity was assessed with the I2 statistic. Twelve RCTs for a total of 1.035 cancer patients treated with anthracyclines were included. RAAS blockers, β-blockers, and aldosterone antagonists showed a statistically significant benefit in preventing left ventricular ejection fraction (LVEF) reduction (MD 3.57, 95% CI 1.04, 6.09) in 11 studies. A non-statistically significant difference was observed in preventing E/A velocity decrease (MD 0.09, 95% CI 0.00, 0.17; 9 studies), left ventricular end-systolic diameter (LVESD) increase (MD − 0.88, 95% CI, − 2.75,0.99; 6 studies), left ventricular end-diastolic diameter (LVEDD) increase (MD −0.95, 95% CI − 2.67,0.76; 6 studies), and mitral A velocity decrease (MD − 1.42, 95% CI − 3.01,0.17; 4 studies). Heart failure was non-significantly reduced in the cardioprotective arm (OR 0.31, 95% CI 0.06, 1.59; 5 studies). Hypotension was non-significantly increased in the cardioprotective arm (OR 3.91, 95% CI 0.42, 36.46, 3 studies). Cardioprotective drugs reduce anthracycline-induced cardiac damage as assessed by echocardiographic parameters. The clinical relevance of this positive effect is still to be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shan K, Lincoff AM, Young JB (1996) Anthracycline-induced cardiotoxicity. Ann Intern Med 125(1):47–58. https://doi.org/10.7326/0003-4819-125-1-199607010-00008

    Article  CAS  PubMed  Google Scholar 

  2. Akhter N, Murtagh G, Yancy C (2015) Strategies for early detection of cardiotoxicities from anticancer therapy in adults: evolving imaging techniques and emerging serum biomarkers. Future Oncol 11(14):2093–2103. https://doi.org/10.2217/fon.15.139

    Article  CAS  PubMed  Google Scholar 

  3. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, Rubino M, Veglia F, Fiorentini C, Cipolla CM (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55(3):213–220. https://doi.org/10.1016/j.jacc.2009.03.095

    Article  CAS  PubMed  Google Scholar 

  4. de Nigris F, Rienzo M, Schiano C, Fiorito C, Casamassimi A, Napoli C (2008) Prominent cardioprotective effects of third generation beta blocker nebivolol against anthracycline-induced cardiotoxicity using the model of isolated perfused rat heart. Eur J Cancer 44(3):334–340. https://doi.org/10.1016/j.ejca.2007.12.010

    Article  CAS  PubMed  Google Scholar 

  5. Machado V, Cabral A, Monteiro P, Gonçalves L, Providência LA (2008) Carvedilol as a protector against the cardiotoxicity induced by anthracyclines (doxorubicin). Rev Port Cardiol 27(10):1277–1296

    PubMed  Google Scholar 

  6. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  7. Cadeddu C, Piras A, Mantovani G, Deidda M, Dessì M, Madeddu C, Massa E, Mercuro G (2010) Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J 160(3):487.e481–487. https://doi.org/10.1016/j.ahj.2010.05.037

    Article  CAS  Google Scholar 

  8. Dessì M, Madeddu C, Piras A, Cadeddu C, Antoni G, Mercuro G, Mantovani G (2013) Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on Epirubin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus 2(1):198. https://doi.org/10.1186/2193-1801-2-198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T, Galanopoulos A, Georgiakodis F, Zimeras S, Kyriakidis M, Ahimastos A (2010) Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol 85(11):894–896. https://doi.org/10.1002/ajh.21840

    Article  CAS  PubMed  Google Scholar 

  10. Abuosa AM, Elshiekh AH, Qureshi K, Abrar MB, Kholeif MA, Kinsara AJ, Andejani A, Ahmed AH, Cleland JGF (2018) Prophylactic use of carvedilol to prevent ventricular dysfunction in patients with cancer treated with doxorubicin. Indian Heart J 70(3):S96–s100

    Article  Google Scholar 

  11. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bosch X, Esteve J, Sitges M, de Caralt TM, Domènech A, Ortiz JT, Monzó M, Morales-Ruiz M, Perea RJ, Rovira M (2011) Prevention of chemotherapy-induced left ventricular dysfunction with enalapril and carvedilol: rationale and design of the OVERCOME trial. J Card Fail 17(8):643–648. https://doi.org/10.1016/j.cardfail.2011.03.008

    Article  PubMed  Google Scholar 

  13. Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S, Meriç M, Ağaç MT (2011) Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol 58(9):988–989. https://doi.org/10.1016/j.jacc.2011.05.025

    Article  PubMed  Google Scholar 

  14. Cr A (2013) Reduction of NT-ProBNP as a marker of acute anthracycline cardiotoxicity with two pharmacological interventions based on strengthening of the antioxidant defense. Carvedilol Omega 3:4. https://doi.org/10.1016/j.yjmcc.2013.10.011

    Article  Google Scholar 

  15. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, Gravdehaug B, von Knobelsdorff-Brenkenhoff F, Bratland Å, Storås TH, Hagve TA, Røsjø H, Steine K, Geisler J, Omland T (2016) Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J 37(21):1671–1680. https://doi.org/10.1093/eurheartj/ehw022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheuk DK, Sieswerda E, van Dalen EC, Postma A, Kremer LC (2016) Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev 8:Cd008011. https://doi.org/10.1002/14651858.CD008011.pub3

    Article  Google Scholar 

  17. Jarfelt M, Andersen NH, Glosli H, Jahnukainen K, Jónmundsson GK, Malmros J, Nysom K, Hasle H (2016) Cardiac function in survivors of childhood acute myeloid leukemia treated with chemotherapy only: a NOPHO-AML study. Eur J Haematol 97(1):55–62. https://doi.org/10.1111/ejh.12683

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Liu ZZ, Liu YY, Zheng ZD, Liang XF, Han YL, Xie XD (2013) Preventive effect of low-dose carvedilol combined with candesartan on the cardiotoxicity of anthracycline drugs in the adjuvant chemotherapy of breast cancer. Zhonghua Zhong Liu Za Zhi 35(12):936–940

    CAS  PubMed  Google Scholar 

  19. Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, Yamane T, Hino M (2005) Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer 104(11):2492–2498. https://doi.org/10.1002/cncr.21478

    Article  CAS  PubMed  Google Scholar 

  20. Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C, Berk V, Karaca H, Kalay N, Oguzhan A, Ergin A (2015) Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail 17(1):81–89. https://doi.org/10.1002/ejhf.196

    Article  CAS  PubMed  Google Scholar 

  21. Tashakori Beheshti A, Mostafavi Toroghi H, Hosseini G, Zarifian A, Homaei Shandiz F, Fazlinezhad A (2016) Carvedilol administration can prevent doxorubicin-induced cardiotoxicity: a double-blind randomized trial. Cardiology 134(1):47–53. https://doi.org/10.1159/000442722

    Article  CAS  PubMed  Google Scholar 

  22. Elitok A, Oz F, Cizgici AY, Kilic L, Ciftci R, Sen F, Bugra Z, Mercanoglu F, Oncul A, Oflaz H (2014) Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J 21(5):509–515. https://doi.org/10.5603/CJ.a2013.0150

    Article  PubMed  Google Scholar 

  23. Janbabai G, Nabati M, Faghihinia M, Azizi S, Borhani S, Yazdani J (2017) Effect of enalapril on preventing anthracycline-induced cardiomyopathy. Cardiovasc Toxicol 17(2):130–139. https://doi.org/10.1007/s12012-016-9365-z

    Article  CAS  PubMed  Google Scholar 

  24. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, Inanc T, Oguzhan A, Eryol NK, Topsakal R, Ergin A (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48(11):2258–2262. https://doi.org/10.1016/j.jacc.2006.07.052

    Article  CAS  PubMed  Google Scholar 

  25. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, Kalay N, Dikilitas M, Yarlioglues M, Karaca H, Berk V, Ardic I, Ergin A, Lam YY (2013) Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol 167(5):2306–2310. https://doi.org/10.1016/j.ijcard.2012.06.023

    Article  PubMed  Google Scholar 

  26. Radulescu D, Buzdugan E, Ciuleanu TE, Todor N, Stoicescu L (2013) Can the epirubicin cardiotoxicity in cancer patients be prevented by angiotensin converting enzyme inhibitors? J buon 18(4):1052–1057

    CAS  PubMed  Google Scholar 

  27. Avila MS, Ayub-Ferreira SM, Barros Wanderley MR, Das Dores Cruz F, Gonçalves Brandão SM, Rigaud VOC, Higuchi-Dos-Santos MH, Hajjar LA, Kalil Filho R, Hoff PM, Sahade M, Ferrari MSM, De Paula Costa RL, Mano MS, Bittencourt Viana Cruz CB, Abduch MC, Lofrano Alves MS, Guimaraes GV, Issa VS, Bittencourt MS, Bocchi EA (2018) Carvedilol for prevention of chemotherapy-related cardiotoxicity: The CECCY Trial. J Am Coll Cardiol 71(20):2281–2290. https://doi.org/10.1016/j.jacc.2018.02.049

    Article  CAS  PubMed  Google Scholar 

  28. Cochera F, Dinca D, Bordejevic DA, Citu IM, Mavrea AM, Andor M, Trofenciuc M, Tomescu MC (2018) Nebivolol effect on doxorubicin-induced cardiotoxicity in breast cancer. Cancer Manag Res 10:2071–2081. https://doi.org/10.2147/cmar.S166481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, Criscitiello C, Goldhirsch A, Cipolla C, Roila F (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol 23(Suppl 7):155–166. https://doi.org/10.1093/annonc/mds293

    Article  Google Scholar 

  30. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM (2016) 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37(36):2768–2801. https://doi.org/10.1093/eurheartj/ehw211

    Article  PubMed  Google Scholar 

  31. Bianco CM, Al-Kindi SG, Oliveira GH (2017) Advanced heart failure therapies for cancer therapeutics-related cardiac dysfunction. Heart Fail Clin 13(2):327–336. https://doi.org/10.1016/j.hfc.2016.12.005

    Article  PubMed  Google Scholar 

  32. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, Dent S, Douglas PS, Durand JB, Ewer M, Fabian C, Hudson M, Jessup M, Jones LW, Ky B, Mayer EL, Moslehi J, Oeffinger K, Ray K, Ruddy K, Lenihan D (2017) Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 35(8):893–911. https://doi.org/10.1200/jco.2016.70.5400

    Article  PubMed  Google Scholar 

  33. Simůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61(1):154–171. https://doi.org/10.1016/s1734-1140(09)70018-0

    Article  PubMed  Google Scholar 

  34. Abdel-Qadir H, Ong G, Fazelzad R, Amir E, Lee DS, Thavendiranathan P, Tomlinson G (2017) Interventions for preventing cardiomyopathy due to anthracyclines: a Bayesian network meta-analysis. Ann Oncol 28(3):628–633. https://doi.org/10.1093/annonc/mdw671

    Article  CAS  PubMed  Google Scholar 

  35. Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, Jones SE, Wadler S, Desai A, Vogel C, Speyer J, Mittelman A, Reddy S, Pendergrass K, Velez-Garcia E, Ewer MS, Bianchine JR, Gams RA (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15(4):1318–1332. https://doi.org/10.1200/jco.1997.15.4.1318

    Article  CAS  PubMed  Google Scholar 

  36. Tebbi CK, London WB, Friedman D, Villaluna D, De Alarcon PA, Constine LS, Mendenhall NP, Sposto R, Chauvenet A, Schwartz CL (2007) Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol 25(5):493–500. https://doi.org/10.1200/jco.2005.02.3879

    Article  CAS  PubMed  Google Scholar 

  37. Riddell E, Lenihan D (2018) The role of cardiac biomarkers in cardio-oncology. Curr Probl Cancer 42(4):375–385. https://doi.org/10.1016/j.currproblcancer.2018.06.012

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Carmelo Tralongo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Statement of human and animal rights

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caspani, F., Tralongo, A.C., Campiotti, L. et al. Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Intern Emerg Med 16, 477–486 (2021). https://doi.org/10.1007/s11739-020-02508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-020-02508-8

Keywords

Navigation