Skip to main content

Part of the book series: New Directions in the Philosophy of Science ((NDPS))

  • 80 Accesses

Abstract

Our discussions have been based almost exclusively on deterministic laws. Some might object that this is not very naturalistic. Aren’t our best physical theories, viz. quantum theories, indeterministic? The short answer is that they most likely are not. While it is folklore that intrinsic randomness takes hold in quantum mechanics, the claim does not stand up well to scrutiny. Standard quantum mechanics involves only one precise dynamical equation—the Schrödinger equation describing the time evolution of the wave function—and this equation is perfectly deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Witness, for instance, David Mermin’s defense of the so-called QBist interpretation:

    Albert Einstein famously asked whether a wavefunction could be collapsed by the observations of a mouse. Bell expanded on that, asking whether the wavefunction of the world awaited the appearance of a physicist with a PhD before collapsing. The QBist answers both questions with “no.” A mouse lacks the mental facility to use quantum mechanics to update its state assignments on the basis of its subsequent experience, but these days even an undergraduate can easily learn enough quantum mechanics to do just that. (Mermin, 2012)

  2. 2.

    See Allori et al. (2008), Allori et al. (2014), Allori (2013), Esfeld (2014a), Esfeld (2020); cf. Bell (2004, Chap. 4) on “local beables” and the notion of “primary ontology” in Maudlin (1997, 2019).

  3. 3.

    An option that is also available for Many-Worlds, see Allori et al. (2011).

  4. 4.

    If it even allows us to apply quantum mechanics to macroscopic systems like measurement devices.

  5. 5.

    See, in particular, Dürr et al. (2004) (reprinted as Chap. 3 in Dürr et al. (2013)) for a rigorous treatment.

  6. 6.

    For rigorous results about the existence and uniqueness of solutions, see Berndl et al. (1995), Teufel and Tumulka (2005).

  7. 7.

    I am using the “epistemic” argument for simplicity, but it is really a shorthand for the various reasons discussed throughout this book for why the empirical import of microscopic laws is always found in typical regularities.

  8. 8.

    That depends only locally on \(\Psi \) and its derivatives, see Goldstein and Struyve (2007).

  9. 9.

    Let \(B=\bigcup B_i\) be a pairwise disjoint with \(\mu (A|B_i)=a\) for all \(B_i\). Then we have \(\mu (B)a=\sum _i \mu (A|B_i)\mu (B_i)= \sum _i \mu (A\cap B_i)=\mu (A\cap B)\) and thus \(\mu (A|B)=\frac {\mu (A\cap B)}{\mu ( B)}=a\).

  10. 10.

    The analysis for “time-like ensembles,” i.e., consecutive measurements on the same system, is mathematically more involved and carried out in Dürr et al. (1992).

  11. 11.

    Absolute uncertainty is sometimes misunderstood as implying the impossibility of locating Bohmian particles with arbitrary precision. What it actually implies is the impossibility of locating Bohmian particles with arbitrary precision without affecting their quantum state.

  12. 12.

    E.g., the above-mentioned problem of arrival times Das & Dürr (2019), or “Wigner’s friend” gedankenexperiments, in which quantum measurements are performed on human observers Lazarovici & Hubert (2019).

  13. 13.

    Such as weak measurements of particle trajectories, see, e.g., Dürr and Lazarovici (2020, Chap. 8) for a discussion.

  14. 14.

    Archived by Physikalische Gesellschaft Zürich. http://www.pgz.ch/history/einstein/index.html.

  15. 15.

    Cf. Dürr et al. (2013, p. 65). See Chen (2021) for an interesting proposal to unite the two levels by conceiving the universal quantum state as represented by a density matrix.

  16. 16.

    As Wallace (2012) explains: “[T]here is no sense in which [decoherence] phenomena lead to a naturally discrete branching process: as we have seen in studying quantum chaos, while a branching structure can be discerned in such systems, it has no natural ‘grain’. To be sure, by choosing a certain discretization of (configuration-)space and time, a discrete branching structure will emerge, but a finer or coarser choice would also give branching. And there is no ‘finest’ choice of branching structure: as we fine-grain our decoherent history space, we will eventually reach a point where interference between branches ceases to be negligible, but there is no precise point where this occurs. As such, the question ‘How many branches are there?’ does not, ultimately, make sense.” (pp. 99–100).

References

  • Albert, D. Z. (2013). Wave function realism. In A. Ney & D. Z. Albert (Eds.), The wave function (pp. 52–57). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Albert, D. Z. (2015). After physics. Cambridge, Massachusetts: Harvard University Press.

    Book  Google Scholar 

  • Allori, V. (2013). Primitive ontology and the structure of fundamental physical theories. In A. Ney & D. Z. Albert (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 58–75). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Allori, V., Dürr, D., Goldstein, S., & Zanghì, N. (2002). Seven steps towards the classical world. Journal of Optics B: Quantum and Semiclassical Optics, 4(4), 482–488.

    Article  ADS  Google Scholar 

  • Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. British Journal for the Philosophy of Science, 59(3), 353–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2011). Many worlds and Schrödinger’s first quantum theory. The British Journal for the Philosophy of Science, 62(1), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2014). Predictions and primitive ontology in quantum foundations: A study of examples. British Journal for the Philosophy of Science, 65(2), 323–352.

    Article  MathSciNet  MATH  Google Scholar 

  • Barrett, J. (2018). Everett’s relative-state formulation of quantum mechanics. In E. N. Zalta (Ed.). The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University (winter 2018 edn.)

    Google Scholar 

  • Barrett, J. A. (2011). Everett’s pure wave mechanics and the notion of worlds. European Journal for Philosophy of Science, 1(2), 277–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Barrett, J. A. (2016). Typicality in pure wave mechanics. Fluctuation and Noise Letters, 15(03), 1640009.

    Article  ADS  Google Scholar 

  • Bell, J. S. (2004). Speakable and unspeakable in quantum mechanics (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Berndl, K., Dürr, D., Goldstein, S., Peruzzi, G., & Zanghì, N. (1995). On the global existence of Bohmian mechanics. Communications in Mathematical Physics, 173(3), 647–673.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bohm, D. (1952a). A suggested interpretation of the quantum theory in terms of “hidden” variables. 1. Physical Review, 85(2), 166–179.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bohm, D. (1952b). A suggested interpretation of the quantum theory in terms of “hidden” variables. 2. Physical Review, 85(2), 180–193.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chen, E. K. (2021). Quantum mechanics in a time-asymmetric universe: On the nature of the initial quantum state. The British Journal for the Philosophy of Science, 72(4), 1155–1183.

    Article  MathSciNet  Google Scholar 

  • Cohen-Tannoudji, C., Diu, B., & Laloe, F. (1991). Quantum mechanics (Vol. 1, 1st ed.). New York: Wiley.

    MATH  Google Scholar 

  • Cowan, C. W. & Tumulka, R. (2016). Epistemology of wave function collapse in quantum physics. British Journal for the Philosophy of Science, 67, 405–434.

    Article  MathSciNet  MATH  Google Scholar 

  • Das, S. & Dürr, D. (2019). Arrival time distributions of spin-1/2 particles. Scientific Reports, 9(1), 1–8.

    ADS  Google Scholar 

  • Daumer, M., Dürr, D., Goldstein, S., & Zanghì, N. (1996). Naive realism about operators. Erkenntnis, 45(2), 379–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1988), 3129–3137.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dürr, D., Goldstein, S., & Zanghì, N. (1997). Bohmian mechanics and the meaning of the wave function. In R. S. Cohen, M. Horne, & J. J. Stachel (Eds.). Experimental metaphysics: Quantum mechanical studies for Abner Shimony (Vol. 1). Boston Studies in the Philosophy and History of Science (pp. 25–38). Netherlands: Springer.

    Google Scholar 

  • Dürr, D., Goldstein, S., Norsen, T., Struyve, W., & Zanghì, N. (2013). Can Bohmian mechanics be made relativistic? Proceedings of the Royal Society A, 470, 2162.

    MATH  Google Scholar 

  • Dürr, D., Goldstein, S., & Zanghì, N. (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics, 67(5–6), 843–907.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dürr, D., Goldstein, S., & Zanghì, N. (2004). Quantum equilibrium and the role of operators as observables in quantum theory. Journal of Statistical Physics, 116(1), 959–1055.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dürr, D. & Lazarovici, D. (2020). Understanding quantum mechanics: The world according to modern quantum foundations. New York: Springer International Publishing.

    Book  MATH  Google Scholar 

  • Dürr, D. & Teufel, S. (2009). Bohmian mechanics: The physics and mathematics of quantum theory. Berlin: Springer.

    MATH  Google Scholar 

  • Earman, J. (2007). Aspects of determinism in modern physics. In J. Butterfield, & J. Earman (Eds.). Philosophy of physics. Handbook of the philosophy of science (pp. 1369–1434). Amsterdam: North-Holland.

    Google Scholar 

  • Einstein, A. (1948). Quanten-Mechanik und Wirklichkeit. Dialectica, 2, 320–324.

    Article  MATH  Google Scholar 

  • Esfeld, M. (2014a). The primitive ontology of quantum physics: Guidelines for an assessment of the proposals. Studies in History and Philosophy of Modern Physics, 47, 99–106.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Esfeld, M. (2014b). Quantum Humeanism, or: Physicalism without properties. The Philosophical Quarterly, 64(256), 453–470.

    Article  Google Scholar 

  • Esfeld, M. (2018). Collapse or no collapse? What is the best ontology of quantum mechanics in the primitive ontology framework? In S. Gao (Ed.). Collapse of the wave function: Models, ontology, origin, and implications (pp. 167–184). Cambridge: Cambridge University Press.

    Google Scholar 

  • Esfeld, M., Lazarovici, D., Hubert, M., & Dürr, D. (2014). The ontology of Bohmian mechanics. British Journal for the Philosophy of Science, 65(4), 773–796.

    Article  MathSciNet  MATH  Google Scholar 

  • Esfeld, M. (2020). From the measurement problem to the primitive ontology programme. In V. Allori, A. Bassi, D. Dürr, & N. Zanghi (Eds.). Do wave functions jump? Perspectives of the work of GianCarlo Ghirardi (pp. 95–108). Springer Nature.

    Google Scholar 

  • Everett, H. (1956). The theory of the universal wave function. Ph.D. thesis.

    Google Scholar 

  • Everett, H. (1957). “Relative state” formulation of quantum mechanics. Reviews of Modern Physics, 29(3), 454–462.

    Article  ADS  MathSciNet  Google Scholar 

  • Ghirardi, G. C., Grassi, R., & Benatti, F. (1995). Describing the macroscopic world: Closing the circle within the dynamical reduction program. Foundations of Physics, 25(1), 5–38.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34(2), 470–491.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Goldstein, S., Lebowitz, J. L., Mastrodonato, C., Tumulka, R., & Zanghì, N. (2010). Approach to thermal equilibrium of macroscopic quantum systems. Physical Review E, 81(1), 011109.

    Article  ADS  Google Scholar 

  • Goldstein, S. & Struyve, W. (2007). On the uniqueness of quantum equilibrium in Bohmian mechanics. Journal of Statistical Physics, 128(5), 1197–1209.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Goldstein, S. & Zanghì, N. (2013). Reality and the role of the wave function in quantum theory. In D. Dürr, S. Goldstein, & N. Zanghì (Eds.). Quantum physics without quantum philosophy (pp. 263–278). Berlin: Springer.

    MATH  Google Scholar 

  • Hensen, B., Bernien, H., Dréau, A. E., Reiserer, A., Kalb, N., Blok, M. S., Ruitenberg, J., Vermeulen, R. F. L., Schouten, R. N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M. W., Markham, M., Twitchen, D. J., Elkouss, D., Wehner, S., Taminiau, T. H., & Hanson, R. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575), 682–686.

    Article  ADS  Google Scholar 

  • Kiefer, C. (2015). Does time exist in quantum gravity? Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), 59(59), 7–24.

    Google Scholar 

  • Lazarovici, D. (2020). Position measurements and the empirical status of particles in Bohmian mechanics. Philosophy of Science, 87(3), 409–424.

    Article  MathSciNet  Google Scholar 

  • Lazarovici, D. & Hubert, M. (2019). How quantum mechanics can consistently describe the use of itself. Scientific Reports, 9(1), 470.

    Article  ADS  Google Scholar 

  • Lazarovici, D., Oldofredi, A., & Esfeld, M. (2018). Observables and unobservables in quantum mechanics: How the no-hidden-variables theorems support the Bohmian particle ontology. Entropy, 20(5), 381.

    Article  ADS  MathSciNet  Google Scholar 

  • Maudlin, T. (1995). Three measurement problems. Topoi, 14, 7–15.

    Article  MathSciNet  Google Scholar 

  • Maudlin, T. (1997). Descrying the world in the wave function. The Monist, 80(1), 3–23.

    Article  Google Scholar 

  • Maudlin, T. (2010). Can the world be only wave-function? In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.). Many worlds? Everett, quantum theory, and reality (pp. 121–143). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Maudlin, T. (2011). Quantum non-locality and relativity (3rd ed.). Wiley-Blackwell.

    Google Scholar 

  • Maudlin, T. (2014). Critical study David Wallace, the emergent multiverse: quantum theory according to the Everett interpretation. Oxford University Press, 2012, 530 + xv pp. Noûs, 48(4), 794–808.

    Google Scholar 

  • Maudlin, T. (2019). Philosophy of physics: Quantum theory. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Maudlin, T. (2020). The grammar of typicality. In V. Allori (ed.). Statistical mechanics and scientific explanation: Determinism, indeterminism and laws of nature. World Scientific.

    Google Scholar 

  • Mermin, N. D. (2012). Commentary: Quantum mechanics: Fixing the shifty split. Physics Today, 65(7), 8–10.

    Article  Google Scholar 

  • Ney, A. (2021). The world in the wave function: A metaphysics for quantum physics. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Schilpp, P. (Ed.) (1949). Albert Einstein: Philosopher-scientist. Number VII in The Library of Living Philosophers. The Library of Living Philosophers Inc. (1st edn.). Evanston, Illinois.

    Google Scholar 

  • Sebens, C. T. & Carroll, S. M. (2018). Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. The British Journal for the Philosophy of Science, 69(1), 25–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Teufel, S. & Tumulka, R. (2005). Simple proof for global existence of Bohmian trajectories. Communications in Mathematical Physics, 258(2), 349–365.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tilloy, A. & Wiseman, H. M. (2021). Non-Markovian wave-function collapse models are Bohmian-like theories in disguise. Quantum, 5, 594.

    Article  Google Scholar 

  • Vaidman, L. (1998). On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. International Studies in the Philosophy of Science, 12(3), 245–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Vona, N., Hinrichs, G., & Dürr, D. (2013). What does one measure when one measures the arrival time of a quantum particle? Physical Review Letters, 111(22), 220404.

    Article  ADS  Google Scholar 

  • Wallace, D. (2012). The emergent multiverse: Quantum theory according to the Everett interpretation. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Wallace, D. & Timpson, C. G. (2010). Quantum mechanics on spacetime I: Spacetime state realism. The British Journal for the Philosophy of Science, 61(4), 697–727.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilhelm, I. (2022). Typical: A theory of typicality and typicality explanation. The British Journal for the Philosophy of Science, 73(2), 561–581.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazarovici, D. (2023). Quantum Mechanics. In: Typicality Reasoning in Probability, Physics, and Metaphysics. New Directions in the Philosophy of Science. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-33448-1_13

Download citation

Publish with us

Policies and ethics