Skip to main content
Log in

On the global existence of Bohmian mechanics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the particle motion in Bohmian mechanics, given by the solution of an ordinary differential equation, exists globally: For a large class of potentials the singularities of the velocity field and infinity will not be reached in finite time for typical initial values. A substantial part of the analysis is based on the probabilistic significance of the quantum flux. We elucidate the connection between the conditions necessary for global existence and the self-adjointness of the Schrödinger Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable models in quantum mechanics. Berlin, Heidelberg, New York: Springer, 1988

    Google Scholar 

  2. Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surv.18(6), 85–191 (1963)

    Google Scholar 

  3. Arnold, V.I.: Mathematical methods in classical mechanics. Berlin, Heidelberg, New York: Springer, 1989

    Google Scholar 

  4. Bell, J.S.: Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press, 1987

    Google Scholar 

  5. Beraha, L.: Diplom thesis. Universität München, 1994

  6. Bochner, S., von Neumann, J.: On compact solutions of operational-differential equations I. Ann. Math.36, 255–291 (1935)

    Google Scholar 

  7. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables, Parts I and II. Phys. Rev.85, 166–179 and 180–193 (1952)

    Google Scholar 

  8. Bohm, D., Hiley, B.J.: The undivided universe: An ontological interpretation of quantum theory. London: Routledge, 1993

    Google Scholar 

  9. Carlen, E.A.: Conservative diffusions. Commun. Math. Phys.94, 293–315 (1984)

    Google Scholar 

  10. Case, K.M.: Singular potentials. Phys. Rev.80, 797–806 (1950)

    Google Scholar 

  11. Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: On the role of operators in quantum theory. In preparation

  12. Diacu, F.N.: Singularities of theN-body problem. Montréal: Les Publications CRM, 1992

    Google Scholar 

  13. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys.67, 843–907 (1992)

    Google Scholar 

  14. Dürr, D., Goldstein, S., Zanghì, N.: Quantum mechanics, randomness, and deterministic reality. Phys. Lett. A172, 6–12 (1992)

    Google Scholar 

  15. Faris, W.G.: Self-adjoint operators. Lecture Notes in Mathematics433. Berlin: Springer, 1975

    Google Scholar 

  16. Gerver, J.L.: The existence of pseudocollisions in the plane. J. Differential Equations89, 1–68 (1991)

    Google Scholar 

  17. Holland, P.R.: The quantum theory of motion. Cambridge: Cambridge University Press, 1993

    Google Scholar 

  18. Hunziker, W.: On the space-time behavior of Schrödinger wavefunctions. J. Math. Phys.7, 300–304 (1966)

    Google Scholar 

  19. Jörgens, K., Rellich, F.: Eigenwerttheorie gewöhnlicher Differentialgleichungen. Berlin, Heidelberg, New York: Springer, 1976

    Google Scholar 

  20. Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc.70, 195–211 (1951)

    Google Scholar 

  21. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer, 1966

    Google Scholar 

  22. Kemble, E.C.: The fundamental principles of quantum mechanics. New York: McGrawHill, 1937

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: Quantum mechanics, nonrelativistic theory. Oxford: Pergamon Press, 1958

    Google Scholar 

  24. Mather, J., McGehee, R.: Solutions of the collinear four body problem which become unbounded in finite time. In: Moser, J. (ed.): Dynamical systems: Theory and applications. Berlin, Heidelberg, New York: Springer, 1975

    Google Scholar 

  25. Mather, J.: Private communication

  26. Moser, J.: Stable and random motions in dynamical systems. Princeton: Princeton University Press, 1973

    Google Scholar 

  27. Nelson, E.: Feynman integrals and Schrödinger equation. J Math. Phys.5, 332–343 (1964)

    Google Scholar 

  28. Nelson, E.: Quantum fluctuations. Princeton: Princeton University Press, 1985

    Google Scholar 

  29. Radin, C., Simon, B.: Invariant domains for the time-dependent Schrödinger equation. J. Differential Equations29, 289–296 (1978)

    Google Scholar 

  30. Rauch, J.: Partial Differential Equations. Berlin, Heidelberg, New York: Springer, 1991

    Google Scholar 

  31. Reed, M., Simon, B.: Methods of modern mathematical physics I. Orlando: Academic Press, 1980

    Google Scholar 

  32. Reed, M., Simon, B.: Methods of modern mathematical physics II. San Diego: Academic Press, 1975

    Google Scholar 

  33. Rudin, W.: Functional analysis. New York: McGraw Hill, 1991

    Google Scholar 

  34. Saari, D.G.: A global existence theorem for the four-body problem of Newtonian mechanics. J. Differential Equations26, 80–111 (1977)

    Google Scholar 

  35. Seba, P.: Schrödinger particle on a half line. Lett. Math. Phys.10, 21–27 (1985)

    Google Scholar 

  36. Simon, B.: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton: Princeton University Press, 1971

    Google Scholar 

  37. Weidmann, J.: Linear operators in Hilbert spaces. Berlin, Heidelberg, New York: Springer, 1980

    Google Scholar 

  38. Xia, Z.: The existence of noncollision singularities in Newtonian systems. Ann. Math.135, 411–468 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berndl, K., Dürr, D., Goldstein, S. et al. On the global existence of Bohmian mechanics. Commun.Math. Phys. 173, 647–673 (1995). https://doi.org/10.1007/BF02101660

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101660

Keywords

Navigation