Skip to main content

Hierarchical CNT-Coated Basalt Fiber Yarns as Smart and Ultrasensitive Reinforcements of Cementitious Matrices for Crack Detection and Structural Health Monitoring

  • Conference paper
  • First Online:
International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures (SynerCrete 2023)

Abstract

Basalt fiber (BF) yarns were homogeneously coated with single-walled carbon nanotubes (SWCNT) following a versatile and scalable roll coating wet deposition process. The SWCNT layers turned the intrinsically electrical insulating BFs into highly conductive reinforcements, which were deployed as smart and ultrasensitive sensors for the crack detection of cementitious matrices. A subsequent thermal drying process achieved a uniform and dense SWCNT coating confirmed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The BF-SWCNT yarns introduced in a cementitious matrix exhibited a significant variation of their fractional resistance change (∆R/R0) upon being exposed to in-situ three-point bending experiments. This response renders the BF-SWCNT as novel strain sensors for cement-based elements possessing high sensitivity factor for crack detection. A subsequent analysis of the fractured surfaces via SEM imaging revealed a good interaction between the reinforcements and the cementitious matrices with adhesive failure mechanisms occurring during the fracture process. The developed BF-SWCNT sensors as model composites of single yarns in a cementitious matrix promisingly envisage the use of CNT-coated BFs for sensing applications in cementitious large-scale composite structural parts or strengthening layers for existing structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liew, K.M., Kai, M.F., Zhang, L.W.: Carbon nanotube reinforced cementitious composites: An overview. Compos. A Appl. Sci. Manuf. 91, 301–323 (2016). https://doi.org/10.1016/j.compositesa.2016.10.020

    Article  Google Scholar 

  2. Horszczaruk, E., Sikora, P., Łukowski, P.: Application of nanomaterials in production of self-sensing concretes: contemporary developments and prospects. Arch. Civ. Eng. 62, 61–74 (2016). https://doi.org/10.1515/ace-2015-0083

    Article  Google Scholar 

  3. Abedi, M., Fangueiro, R., Correia, A.G.: Innovative self-sensing fiber-reinforced cemented sand with hybrid CNT/GNP. Smart Mater. Struct. 30, 105034 (2021). https://doi.org/10.1088/1361-665X/ac2108

    Article  Google Scholar 

  4. Reddy, P.N., Kavyateja, B.V., Jindal, B.B.: Structural health monitoring methods, dispersion of fibers, micro and macro structural properties, sensing, and mechanical properties of self-sensing concrete—A review. Struct. Concr. 22, 793–805 (2021). https://doi.org/10.1002/suco.202000337

  5. Konsta-Gdoutos, M.S., Danoglidis, P.A., Falara, M.G., Nitodas, S.F.: Fresh and mechanical properties, and strain sensing of nanomodified cement mortars: The effects of MWCNT aspect ratio, density and functionalization. Cement Concr. Compos. 82, 137–151 (2017). https://doi.org/10.1016/j.cemconcomp.2017.05.004

  6. Yoo, D.-Y., You, I., Lee, S.-J.: Electrical Properties of cement-based composites with carbon nanotubes, graphene, and graphite nanofibers. Sensors. 17, 1064 (2017). https://doi.org/10.3390/s17051064

  7. Song, C., Choi, S.: Moisture-dependent piezoresistive responses of CNT-embedded cementitious composites. Compos. Struct. 170, 103–110 (2017). https://doi.org/10.1016/j.compstruct.2017.03.009

  8. Liebscher, M., et al.: Temperature- and pH-dependent dispersion of highly purified multiwalled carbon nanotubes using polycarboxylate-based surfactants in aqueous suspension. J. Phys. Chem. C. 121, 16903–16910 (2017). https://doi.org/10.1021/acs.jpcc.7b05534

  9. Fuge, R., et al.: Fragmentation characteristics of undoped and nitrogen-doped multiwalled carbon nanotubes in aqueous dispersion in dependence on the ultrasonication parameters. Diam. Relat. Mater. 66, 126–134 (2016). https://doi.org/10.1016/j.diamond.2016.03.026

  10. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    Google Scholar 

  11. Loh, K.J., Gonzalez, J.: Cementitious composites engineered with embedded carbon nanotube thin films for enhanced sensing performance. J. Phys.: Conf. Ser. 628, 012042 (2015). https://doi.org/10.1088/1742-6596/628/1/012042

  12. Naeem, F., Lee, H.K., Kim, H.K., Nam, I.W.: Flexural stress and crack sensing capabilities of MWNT/cement composites. Compos. Struct. 175, 86–100 (2017). https://doi.org/10.1016/j.compstruct.2017.04.078

    Article  Google Scholar 

  13. Rambo, D.A.S., de Andrade Silva, F., Toledo Filho, R.D., Gomes, O. da F.M.: Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete. Mater Design 65, 24–33 (2015)

    Google Scholar 

  14. Signorini, C., Nobili, A.: Comparing durability of steel reinforced grout (SRG) and textile reinforced mortar (TRM) for structural retrofitting. Mater. Struct. 54(3), 1–15 (2021). https://doi.org/10.1617/s11527-021-01729-3

    Article  Google Scholar 

  15. Wang, J., Wan, C., Zeng, Q., Shen, L., Malik, M.A., Yan, D.: Effect of eccentricity on retrofitting efficiency of basalt textile reinforced concrete on partially damaged masonry columns. Compos. Struct. 232, 111585 (2020). https://doi.org/10.1016/j.compstruct.2019.111585

    Article  Google Scholar 

  16. Zhou, H., Jia, B., Huang, H., Mou, Y.: Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials. 13, 1362 (2020). https://doi.org/10.3390/ma13061362

  17. Fiore, V., Scalici, T., Di Bella, G., Valenza, A.: A review on basalt fibre and its composites. Compos. B Eng. 74, 74–94 (2015). https://doi.org/10.1016/j.compositesb.2014.12.034

    Article  Google Scholar 

  18. Tzounis, L., Kirsten, M., Simon, F., Mäder, E., Stamm, M.: The interphase microstructure and electrical properties of glass fibers covalently and non-covalently bonded with multiwall carbon nanotubes. Carbon 73, 310–324 (2014). https://doi.org/10.1016/j.carbon.2014.02.069

    Article  Google Scholar 

  19. Clancy, A.J., White, E.R., Tay, H.H., Yau, H.C., Shaffer, M.S.P.: Systematic comparison of conventional and reductive single-walled carbon nanotube purifications. Carbon 108, 423–432 (2016). https://doi.org/10.1016/j.carbon.2016.07.034

    Article  Google Scholar 

  20. Krause, B., Pötschke, P., Ilin, E., Predtechenskiy, M.: Melt mixed SWCNT-polypropylene composites with very low electrical percolation. Polymer 98, 45–50 (2016). https://doi.org/10.1016/j.polymer.2016.06.004

    Article  Google Scholar 

  21. Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005). https://doi.org/10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  22. Kataura, H., et al.: Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999). https://doi.org/10.1016/S0379-6779(98)00278-1

    Article  Google Scholar 

  23. Coleman, B.D.: On the strength of classical fibres and fibre bundles. J. Mech. Phys. Solids 7, 60–70 (1958). https://doi.org/10.1016/0022-5096(58)90039-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Katerelos, D.T.G., Paipetis, A., Loutas, T., Sotiriadis, G., Kostopoulos, V., Ogin, S.L.: In situ damage monitoring of cross-ply laminates using acoustic emission. Plast., Rubber Compos. 38, 229–234 (2009). https://doi.org/10.1179/174328909X435348

    Article  Google Scholar 

  25. Schneider, K., et al.: Mineral-based coating of plasma-treated carbon fibre rovings for carbon concrete composites with enhanced mechanical performance. Materials. 10, 360 (2017). https://doi.org/10.3390/ma10040360

    Article  Google Scholar 

  26. Cohen, Z., Peled, A.: Effect of nanofillers and production methods to control the interfacial characteristics of glass bundles in textile fabric cement-based composites. Compos. A Appl. Sci. Manuf. 43, 962–972 (2012). https://doi.org/10.1016/j.compositesa.2012.01.022

    Article  Google Scholar 

  27. Gaben, M., Goldfeld, Y.: Self-sensory carbon-based textile reinforced concrete beams – Characterization of the structural-electrical response by AC measurements. Sens. Actuators, A 334, 113322 (2022). https://doi.org/10.1016/j.sna.2021.113322

    Article  Google Scholar 

  28. Signorini, C., Nobili, A.: Targeting functionalised carbon nanotubes at the interphase of Textile Reinforced Mortar (TRM) composites. Compos. A Appl. Sci. Manuf. 144, 106330 (2021). https://doi.org/10.1016/j.compositesa.2021.106330

    Article  Google Scholar 

Download references

Acknowledgement

The authors appreciate the support from DAAD (German Academic Exchange Service) as well as the co-financing by tax funds on the basis of the budget adopted by the Saxon State Parliament.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Liebscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liebscher, M., Tzounis, L., Signorini, C., Mechtcherine, V. (2023). Hierarchical CNT-Coated Basalt Fiber Yarns as Smart and Ultrasensitive Reinforcements of Cementitious Matrices for Crack Detection and Structural Health Monitoring. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-031-33187-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33187-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33186-2

  • Online ISBN: 978-3-031-33187-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics