Skip to main content

Optimal Strategies to Prevent COVID-19 from Becoming a Pandemic

  • Chapter
  • First Online:
Mathematical Modeling and Intelligent Control for Combating Pandemics

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 203))

  • 144 Accesses

Abstract

This chapter is dedicated to what measures could have been taken to prevent COVID-19 from becoming a pandemic. Since COVID-19 shows the distribution according to the power law and exponential law in biological networks, fractional derivatives are useful to model the spread of the virus realistically. Therefore, a mathematical model, formerly originated for COVID-19, is firstly investigated with the Caputo derivative to represent the spread of the virus according to the power law. Then, a fractional optimal control problem (FOCP) is enhanced to prevent spread. Existence-proven controls representing strategies such as non-pharmaceutical and pharmaceutical interventions and plasma transfusion therapy aim to minimize the rate of infected individuals together with the cost required for treatment and prevention of the infection. After that, the necessary optimality conditions are revealed by Pontryagin’s Maximum Principle and solved numerically using Adam’s type predictor–corrector method (PCM) combined with the forward–backward sweep algorithm (FBSA). Finally, the optimal control design is studied in terms of the Atangana–Baleanu derivative in Caputo sense (ABC) to examine the spread of the virus according to the exponential law. All results are presented comparatively under various control strategies by using MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Coronavirus. World Health Organization, https://www.who.int/health-topics/coronavirus. Accessed 5 Nov 2022

  2. Zhou, P., et al.: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798), 270–273 (2020)

    Article  Google Scholar 

  3. Li, Q., et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Eng. J. Med. 382, 1199–1207 (2020)

    Article  Google Scholar 

  4. Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020)

    Article  Google Scholar 

  5. Sharma, S., Samanta, G.P.: Analysis of a hand–foot–mouth disease model. Int. J. Biomath. 10(02), 1750016 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonyah, E., Khan, M.A., Okosun, K.O., Islam, S.: A theoretical model for Zika virus transmission. PloS one 12(10), e0185540 (2017)

    Article  Google Scholar 

  7. Egonmwan, A.O., Okuonghae, D.: Analysis of a mathematical model for tuberculosis with diagnosis. J. Appl. Math. Comput. 59, 129–162 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, T.M., Yin, L.A, et al.: Mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty 9(1), 1–8 (2020)

    Article  MathSciNet  Google Scholar 

  9. Hou, C., et al.: The effectiveness of quarantine of Wuhan City against the Corona Virus Disease 2019 (COVID-19): a well-mixed SEIR model analysis. J. Med. Virol. 92(7), 841–848 (2020)

    Article  Google Scholar 

  10. Ndaïrou, F., Area, I., Nieto, J.J., Torres, D.F.: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solit. Fractals 135, 109846 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lemos-Paião, A.P., Silva, C.J., Torres, D.F.: A new compartmental epidemiological model for COVID-19 with a case study of Portugal. Ecol. Complex. 44, 100885 (2020)

    Article  Google Scholar 

  12. Samui, P., Mondal, J., Khajanchi, S.: A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos Solit. Fractals 140, 110173 (2020)

    Article  MathSciNet  Google Scholar 

  13. López, L., Rodo, X.: A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: simulating control scenarios and multi-scale epidemics. Results Phys. 21, 103746 (2021)

    Article  Google Scholar 

  14. Hamou, A.A., Rasul, R.R., Hammouch, Z., Ö zdemir, N.: Analysis and dynamics of a mathematical model to predict unreported cases of COVID-19 epidemic in Morocco. Comput. Appl. Math. 41(6), 1–33 (2022)

    Google Scholar 

  15. Khojasteh, H., Khanteymoori, A., Olyaee, M.H.: Comparing protein–protein interaction networks of SARS-CoV-2 and (H1N1) influenza using topological features. Sci. Rep. 12(1), 1–11 (2022)

    Article  Google Scholar 

  16. Eroğlu, B.B.İ., Avcı, D.: Separable solutions of Cattaneo-Hristov heat diffusion equation in a line segment: Cauchy and source problems. Alex. Eng. J. 60(2), 2347–2353 (2021)

    Article  Google Scholar 

  17. Povstenko, Y., Avcı, D., Eroğlu, B.B.İ., Ö zdemir, N.: Control of thermal stresses in axisymmetric problems of fractional thermoelasticity for an infinite cylindrical domain. Therm. Sci. 21(1 Part A), 19–28 (2017)

    Google Scholar 

  18. Hristov, J.: Magnetic field diffusion in ferromagnetic materials: fractional calculus approaches. Int. J. Optim. Control: Theor. Appl. (IJOCTA) 12, 20–38 (2022)

    Google Scholar 

  19. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Naik, P.A., Owolabi, K.M., Zu, J., Naik, M.U.D.: Modeling the transmission dynamics of COVID-19 pandemic in Caputo type fractional derivative. J. Multiscale Model. 12(03), 2150006 (2021)

    Article  MathSciNet  Google Scholar 

  21. Joshi, H., Jha, B.K., Yavuz, M.: Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Math. Biosci. Eng. 20(1), 213–240 (2023)

    Article  MathSciNet  Google Scholar 

  22. Lemos-Paião, A.P., Silva, C.J., Torres, D.F.: An epidemic model for cholera with optimal control treatment. J. Comput. Appl. Math. 318, 168–180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Baba, I. A., Abdulkadir, R.A., Esmaili, P.: Analysis of tuberculosis model with saturated incidence rate and optimal control. Physica A. 540, 123237 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zine, H., El Adraoui, A., Torres, D.F.: Mathematical analysis, forecasting and optimal control of HIV/AIDS spatiotemporal transmission with a reaction diffusion SICA model. AIMS Math. 7(9), 16519–16535 (2022)

    Article  MathSciNet  Google Scholar 

  25. Baleanu, D., Shekari, P., Torkzadeh, L., Ranjbar, H., Jajarmi, A., Nouri, K.: Stability analysis and system properties of Nipah virus transmission: a fractional calculus case study. Chaos Solit. Fractals 166, 112990 (2023)

    Article  MathSciNet  Google Scholar 

  26. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Agrawal, O.P.: A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 14(9–10), 1291–1299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Eroğlu, B.B.İ., Yapışkan, D.: Local generalization of transversality conditions for optimal control problem. Math. Model. Nat. Phenom. 14(3), 310 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yildiz, T.A., Jajarmi, A., Yildiz, B., Baleanu, D.: New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete Contin. Dyn. Syst. -S. 13(3), 407–428 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Eroğlu, B.B.İ., Yapışkan, D.: Generalized conformable variational calculus and optimal control problems with variable terminal conditions. AIMS Math. 5(2), 1105–1126 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Avcı, D., Eroğlu, B.B.İ.: Optimal control of the Cattaneo–Hristov heat diffusion model. Acta Mech. 232(9), 3529–3538 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tajadodi, H., Jafari, H., Ncube, M.N.: Genocchi polynomials as a tool for solving a class of fractional optimal control problems. Int. J. Optim. Control: Theor. Appl. 12(2), 160–168 (2022)

    MathSciNet  Google Scholar 

  33. Sweilam, N.H., Assiri, T.A., Abou Hasan, M.M.: Optimal control problem of variable-order delay system of advertising procedure: numerical treatment. Discrete Contin. Dyn. Syst.-S. 15(5), 1247–1268 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Avcı, D., Soytürk, F.: Optimal control strategies for a computer network under virus threat. J. Comput. Appl. Math. 419, 114740 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bonyah, E.: Fractional Optimal Control Model for Nutrients, Phytoplankton, and Zooplankton. In: Applications of Fractional Calculus to Modeling in Dynamics and Chaos, pp. 429–452. Chapman and Hall/CRC, New York (2023)

    Google Scholar 

  36. Panwar, V.S., Uduman, P.S., Gómez-Aguilar, J.F.: Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives. Chaos Solit. Fractals 145, 110757 (2021)

    Article  MathSciNet  Google Scholar 

  37. Eroğlu, B.B.İ., Yapışkan, D.: Comparative analysis on fractional optimal control of an SLBS model. J. Comput. Appl. Math. 421, 114840 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, Z.H., et al.: Mathematical modeling and optimal control of the COVID-19 dynamics. Results Phys. 31, 105028 (2021)

    Article  Google Scholar 

  39. Eroğlu, B.B.İ., Yapışkan, D.: An optimal control strategy to prevent the spread of COVID-19. In: Conference Proceedings of Science Technology, vol. 5(1), pp. 182–186 (2022)

    Google Scholar 

  40. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  41. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2) 763–769 (2016)

    Article  Google Scholar 

  42. Moriyama, M., Hugentobler, W.J., Iwasaki, A.: Seasonality of respiratory viral infections. Annu. Rev. Virol. 7(1), 83–101 (2020)

    Article  Google Scholar 

  43. Focosi, D., Anderson, A.O., Tang, J.W., Tuccori, M.: Convalescent plasma therapy for COVID-19: state of the art. Clin. Microbiol. Rev. 33(4), e00072-20 (2020)

    Article  Google Scholar 

  44. Ali, H.M., Pereira, F.L., Gama, S.M.: A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Math. Methods Appl. Sci. 39(13), 3640–3649 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Birkhoff, G., Rota, G.C.C.: Ordinary Differential Equations. John Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  46. Lukes, D.L.: Differential equations: classical to controlled. Math. Sci. Eng. 162, 335 (1982). Academic Press, New York

    Google Scholar 

  47. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D.: A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos 29(8), 083127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beyza Billur İskender Eroğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eroğlu, B.B.İ., Yapışkan, D. (2023). Optimal Strategies to Prevent COVID-19 from Becoming a Pandemic. In: Hammouch, Z., Lahby, M., Baleanu, D. (eds) Mathematical Modeling and Intelligent Control for Combating Pandemics. Springer Optimization and Its Applications, vol 203. Springer, Cham. https://doi.org/10.1007/978-3-031-33183-1_3

Download citation

Publish with us

Policies and ethics