Skip to main content

Explainable Object Detection in the Field of Search and Rescue Robotics

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 135))

Included in the following conference series:

  • 602 Accesses

Abstract

State-of-the-art object detection in search and rescue robotics relies on CNNs, which reach excellent scores but lack explainability due to their “black box” characteristic. In such a domain, mission failure or misdetections can have drastic consequences. Therefore research should strive to increase the explainability regarding the CNNs’ classification strategies. In this paper, existing methods for object detection are applied and investigated in the context of search and rescue robotics in order to compose a fully explainable pipeline. Unlike existing object detection methods, the presented method is based on an exhaustive model investigation concerning post-hoc explainability. The method is applied to detecting handwheels of gate-valves, with a post-hoc analysis of the classification strategies learned by the object detector. In order to train and test the object detection model, a novel dataset is composed, including 2447 images, nine handwheel types, and 6696 annotations. Five CNN object detectors (R-CNN, Faster R-CNN, RetinaNet, YOLOv5s, and SSD) are compared based on mAP0.5 and mAP0.5:0.95. Two CNN object detectors’ classification strategies were investigated with the SpRAy method. Comparing mAP0.5, mAP0.5:0.95, and inference times reveals that YOLOv5s is the superior model across all categories. SpRAy analysis of R-CNN and YOLOv5s did not reveal any abnormal classification strategies, which indicates a well-balanced dataset. YOLOv5s appears to have learned different classification strategies for different handwheel types. Our handwheels dataset is available at: https://www.kaggle.com/hoenigpet/handwheels-for-gatevalves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052

    Article  Google Scholar 

  2. Anders, C.J., Neumann, D., Marin, T., Samek, W., Müller, K.R., Lapuschkin, S.: XAI for analyzing and unlearning spurious correlations in imagenet. In: ICML’20 Workshop on Extending Explainable AI Beyond Deep Models and Classifiers (XXAI) (2020)

    Google Scholar 

  3. Anders, C.J., Neumann, D., Samek, W., Müller, K., Lapuschkin, S.: Software for dataset-wide XAI: from local explanations to global insights with zennit, corelay, and virelay. CoRR abs/2106.13200 (2021). https://arxiv.org/abs/2106.13200

  4. Anders, C.J., Weber, L., Neumann, D., Samek, W., Müller, K.R., Lapuschkin, S.: Finding and removing clever hans: Using explanation methods to debug and improve deep models. Inf. Fusion 77, 261–295 (2022)

    Article  Google Scholar 

  5. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  6. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  7. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  8. Doshi-Velez, F., Kim, B.: Considerations for evaluation and generalization in interpretable machine learning. In: Escalante, H.J., Escalera, S., Guyon, I., Baró, X., Güçlütürk, Y., Güçlü, U., van Gerven, M. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_1

    Chapter  Google Scholar 

  9. Fung, A., Wang, L.Y., Zhang, K., Nejat, G., Benhabib, B.: Using deep learning to find victims in unknown cluttered urban search and rescue environments. Curr. Robot. Rep. 1(3), 105–115 (2020)

    Article  Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE (2013)

    Google Scholar 

  11. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  12. Jocher, G., et al.: ultralytics/yolov5: v6.1 - tensorrt, tensorflow edge TPU and openvino export and inference (2022). https://doi.org/10.5281/zenodo.6222936

  13. Karasmanoglou, A., Antonakakis, M., Zervakis, M.: Heatmap-based explanation of YOLOv5 object detection with layer-wise relevance propagation. In: 2022 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6. IEEE (2022)

    Google Scholar 

  14. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)

    Article  Google Scholar 

  16. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.): ECCV 2016. LNCS, vol. 9906. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6

    Book  Google Scholar 

  18. Miyakawa, K., Kanda, T., Ohya, J., Ogata, H., Hashimoto, K., Takanishi, A.: Automatic estimation of the position and orientation of stairs to be reached and climbed by a disaster response robot by analyzing 2D image and 3D point cloud. Int. J. Mech. Eng. Rob. Res. 9(9), 1312–1321 (2020)

    Google Scholar 

  19. Nishikawa, K., Ohya, J., Matsuzawa, T., Takanishi, A., Ogata, H., Hashimoto, K.: Automatic detection of valves with disaster response robot on basis of depth camera information. In: 2018 Digital Image Computing: Techniques and Applications (DICTA). IEEE (2019)

    Google Scholar 

  20. Pearl, J., Mackenzie, D.: The Book of Why. Basic Books, New York (2018)

    MATH  Google Scholar 

  21. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018). https://arxiv.org/abs/1804.02767v1

  22. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. Encycl. Database Syst. 1–7 (2016)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  24. Schneider, F.E.: ELROB - the European land robot trial (2022). https://www.elrob.org/

  25. Schneider, F.E., Wildermuth, D.: Assessing the search and rescue domain as an applied and realistic benchmark for robotic systems. In: 2016 17th International Carpathian Control Conference (ICCC), pp. 657–662. IEEE (2016)

    Google Scholar 

  26. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  27. Shim, V.A., Yuan, M., Tan, B.H.: Automatic object searching by a mobile robot with single RGB-D camera. In: 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 56–62. IEEE (2018)

    Google Scholar 

  28. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): towards medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2019)

    Article  Google Scholar 

  29. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–587. IEEE Computer Society (1991)

    Google Scholar 

  30. Wang, J., Jing, X., Yan, Z., Fu, Y., Pedrycz, W., Yang, L.T.: A survey on trust evaluation based on machine learning. ACM Comput. Surv. 53(5), 1–36 (2020)

    Google Scholar 

  31. Wöber, W.: Identifying geographically di erentiated features of ethopian nile tilapia (oreochromis niloticus) morphology with machine learning. PLoS ONE 16, 1–30 (2021)

    Google Scholar 

  32. Wöber, W., Mehnen, L., Curto, M., Tibihika, P.D., Tesfaye, G., Meimberg, H.: Investigating shape variation using generalized procrustes analysis and machine learning. Appl. Sci. 12(6) (2022)

    Google Scholar 

  33. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017). https://arxiv.org/abs/1711.00199v3

  34. Zhang, J., Yin, B., Xiao, X., Yang, H.: 3D detection and 6D pose estimation of texture-less objects for robot grasping. In: 2021 6th International Conference on Control and Robotics Engineering, ICCRE 2021, pp. 33–38. IEEE (2021)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Austrian Research Promotion Agency (FFG), project SmartDis, and the Austrian Science Fund (FWF), under project No. I 6114, project iChores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hönig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hönig, P., Wöber, W. (2023). Explainable Object Detection in the Field of Search and Rescue Robotics. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-32606-6_5

Download citation

Publish with us

Policies and ethics