Skip to main content

An Encoder-Decoder Architecture for Smooth Motion Generation

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2023)

Abstract

Trajectory generation for a dynamic task, where the outcome of the task is not ensured by simple repetition of a motion, is a complex problem. In this paper we explore a methodology for motion generation that retains the correspondence of the executed dynamic task. Throwing, which is not explored in this paper, is a very illustrative example. If we just imitate human throwing motion with a robot, the outcome of the throw with a robot will most likely not be very similar to the demonstrated one. In this paper we explore a deep encode-decode architecture, combined with ProDMP trajectory encoding in order to actively predict the behavior of the dynamic task and execute the motion such that the task is observed. Our example is based on the task of dragging a box across a surface. Guided by future work on transferability, in this paper we explore the parameters of the approach and the requirements for effective task transfer to a new domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calinon, S., Alizadeh, T., Caldwell, D.G.: On improving the extrapolation capability of task-parameterized movement models. In: International Conference on Intelligent Robots and Systems, pp. 610–616 (2013)

    Google Scholar 

  2. Dillmann, R.: Teaching and learning of robot tasks via observation of human performance. Robot. Auton. Syst. 47(2–3), 109–116 (2004). https://doi.org/10.1016/j.robot.2004.03.005

    Article  Google Scholar 

  3. Eysenbach, B., Levine, S.: Maximum entropy RL (provably) solves some robust RL problems (2021). https://doi.org/10.48550/ARXIV.2103.06257

  4. Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, G., Jin, Z., Volpp, M., Otto, F., Lioutikov, R., Neumann, G.: ProDMPs: a unified perspective on dynamic and probabilistic movement primitives (2022). https://doi.org/10.48550/ARXIV.2210.01531

  7. Lončarević, Z., Simonič, M., Ude, A., Gams, A.: Combining reinforcement learning and lazy learning for faster few-shot transfer learning. In: 21st International Conference on Humanoid Robots (Humanoids), pp. 285–290 (2022)

    Google Scholar 

  8. Pahič, R., Lončarević, Z., Ude, A., Nemec, B., Gams, A.: User feedback in latent space robotic skill learning. In: 18th International Conference on Humanoid Robots (Humanoids), pp. 270–276 (2018)

    Google Scholar 

  9. Pahič, R., Lončarević, Z., Gams, A., Ude, A.: Robot skill learning in latent space of a deep autoencoder neural network. Robot. Auton. Syst. 135, 103690 (2021)

    Article  Google Scholar 

  10. Paraschos, A., Daniel, C., Peters, J., Neumann, G.: Probabilistic movement primitives. In: Neural Information Processing Systems, pp. 2616–2624 (2013)

    Google Scholar 

  11. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-specific generalization of discrete and periodic dynamic movement primitives. Trans. Robot. 26(5), 800–815 (2010)

    Article  Google Scholar 

  12. Volpp, M., Flürenbrock, F., Grossberger, L., Daniel, C., Neumann, G.: Bayesian context aggregation for neural processes. In: International Conference on Learning Representations (2021)

    Google Scholar 

Download references

Acknowledgement

This research was funded by ARRS research grant Robot Textile and Fabric Inspection and Manipulation - RTFM (J2-4457), ARRS program group Automation, Robotics, and Biocybernetics (P2-0076) and DAAD Grant 57588366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvezdan Lončarević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lončarević, Z., Li, G., Neumann, G., Gams, A. (2023). An Encoder-Decoder Architecture for Smooth Motion Generation. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-32606-6_42

Download citation

Publish with us

Policies and ethics