Skip to main content

UR10e Robot Drift Compensation for Precision Measurement Applications

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 135))

Included in the following conference series:

  • 545 Accesses

Abstract

This paper deals with the possibility of low-cost on-line compensation for thermally induced error. The aim is to compensate the drift of the UR10e collaborative robot to the extent that the robot operates with the repeatability guaranteed by the manufacturer for the thermal steady state. Thus, the authors have developed a compensation system that predicts drift and, by applying it in the robot control, can reduce the difference in positioning between the cold and warm robot. A measurement nest equipped with confocal sensor and a pair of laser profilers was used to measure repeatability. The robot was also equipped with sensors for temperature detection. The tests were carried out under different conditions and ISO 9283:1998 standard was also considered. By applying the proposed methodology, drift can be compensated with a high degree of efficiency. In some measurements the drift was compensated completely, usually the compensation efficiency was around 90%. Thanks to the compensation system, it is not necessary to pre-warm the robot and, above all, it is possible to guarantee a predetermined level of repeatability regardless of the actual robot or ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nubiola, A., Slamani, M., Joubair, A., Bonev, I.A.: Comparison of two calibration methods for a small industrial robot based on an optical CMM and a laser tracker. Robotica 32(3), 447–466 (2014). https://doi.org/10.1017/S0263574713000714

    Article  Google Scholar 

  2. Nubiola, A., Bonev, I.A.: Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Rob. Computer-Integrated Manuf. 29(1), 236–245 (2013). https://doi.org/10.1016/j.rcim.2012.06.004

    Article  Google Scholar 

  3. Wu, Y., Klimchik, A., Caro, S., Furet, B., Pashkevich, A.: Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robot. Computer-Integrated Manuf. 35, 151–168 (2015). https://doi.org/10.1016/j.rcim.2015.03.007

    Article  Google Scholar 

  4. Józwik, J., Ostrowski, D., Jarosz, P., Mika, D.: Industrial robot repeatability testing with high speed camera phantom V2511. Adv. Sci. Technol. Res. J. 10(32), 86–96 (2016). https://doi.org/10.12913/22998624/65136

    Article  Google Scholar 

  5. Vocetka, M., Huňady, R., Hagara, M., Bobovský, Z., Kot, T., Krys, V.: Influence of the approach direction on the repeatability of an industrial robot. Appl. Sci. 10(23), 8714 (2020). https://doi.org/10.3390/app10238714

    Article  Google Scholar 

  6. Filion, A., Joubair, A., Tahan, A.S., Bonev, I.A.: Robot calibration using a portable photogrammetry system. Robot. Computer-Integrated Manuf. 49, 77–87 (2018). https://doi.org/10.1016/j.rcim.2017.05.004

    Article  Google Scholar 

  7. Moeller, C., et al.: Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system. SAE Int. J. Aerosp. 10(2), 100–108 (2017). https://doi.org/10.4271/2017-01-2165

    Article  Google Scholar 

  8. Huczala, D., Oščádal, P., Spurný, T., Vysocký, A., Vocetka, M., Bobovský, Z.: Camera-based method for identification of the layout of a robotic workcell. Appl. Sci. 10(21), 7679 (2020). https://doi.org/10.3390/app10217679

    Article  Google Scholar 

  9. Oščádal, P., et al.: Improved pose estimation of aruco tags using a novel 3D placement strategy. Sensors 20(17), 4825 (2020). https://doi.org/10.3390/s20174825

    Article  Google Scholar 

  10. Kluz, R., Kubit, A., Trzepiecinski, T.: Investigations of temperature-induced errors in positioning of an industrial robot arm. J. Mech. Sci. Technol. 32(11), 5421–5432 (2018). https://doi.org/10.17531/ein.2018.4.1

    Article  Google Scholar 

  11. Kluz, R., Kubit, A., Sęp, J., Trzepieciński, T.: Effect of temperature variation on repeatability positioning of a robot when assembling parts with cylindrical surfaces. Eksploatacja i Niezawodność – Maintenance Reliab. 20(4), 503–513 (2018). https://doi.org/10.17531/ein.2018.4.1

    Article  Google Scholar 

  12. Vocetka, M., et al.: Influence of drift on robot repeatability and its compensation. Appl. Sci. 11(22), 10813 (2021). https://doi.org/10.3390/app112210813

    Article  Google Scholar 

  13. UR10e Specification [online]. Energivej 25 5260, Odense, Denmark: Universal Robots A/S [cit. 2023–01–10]. Available from: https://www.universal-robots.com/media/1807466/ur10e-rgb-fact-sheet-landscape-a4-125-kg.pdf (2023)

  14. Programmable Resolution 1-Wire Digital Thermometer: DS18B20 [online]. [cit. 2022–05–02]. Available from: https://www.maximintegrated.com/en/products/sensors/DS18B20.html

  15. Konfokální laserový měřicí systém řady CL-3000: Hlava senzoru CL-L015 (15 mm, čtyřbodový typ) [online]. Bedrijvenlaan 5, 2800 Mechelen, Belgie: KEYENCE [cit. 2022-05-02]. Available from: https://www.keyence.eu/cscz/products/measure/laser-1d/cl-3000/models/cl-l015/

  16. 2D/3D Laser Profiler: LJ-X8000 series [online]. Avebury House, 219–225 Avebury Boulevard, Milton Keynes MK9 1AU, U.K.: Keyence [cit. 2021-10-04]. Available from: https://www.keyence.co.uk/products/measure/laser-2d/lj-x8000/models/lj-x8080/ (2021)

  17. Heczko, D., Oščádal, P., Kot, T., Huczala, D., Semjon, J., Bobovský, Z.: Increasing the reliability of data collection of laser line triangulation sensor by proper placement of the sensor. Sensors 21(8), 2890 (2021). https://doi.org/10.3390/s21082890

    Article  Google Scholar 

Download references

Acknowledgement

This article has been elaborated with the support of the Research Centre of Advanced Mechatronic Systems project, reg. no. CZ.02.1.01/0.0/0.0/16_019/0000867 in the frame of the Operational Program Research, Development and Education and by specific research project SP2023/060, financed by the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Vocetka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vocetka, M. et al. (2023). UR10e Robot Drift Compensation for Precision Measurement Applications. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-32606-6_33

Download citation

Publish with us

Policies and ethics