Skip to main content

The Coming Decades of Quantum Simulation

  • Chapter
  • First Online:
Sketches of Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 1000))

Abstract

Contemporary quantum technologies face major difficulties in fault tolerant quantum computing with error correction, and focus instead on various shades of quantum simulation (Noisy Intermediate Scale Quantum, NISQ) devices, analogue and digital quantum simulators and quantum annealers. There is a clear need and quest for such systems that, without necessarily simulating quantum dynamics of some physical systems, can generate massive, controllable, robust, entangled, and superposition states. This will, in particular, allow the control of decoherence, enabling the use of these states for quantum communications (e.g. to achieve efficient transfer of information in a safer and quicker way), quantum metrology, sensing and diagnostics (e.g. to precisely measure phase shifts of light fields, or to diagnose quantum materials). In this Chapter we present a vision of the golden future of quantum simulators in the decades to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Icfo qot website, https://www.icfo.eu/research-group/11/qot/news/437/

  2. Quside website, https://www.linkedin.com/company/quside/?originalSubdomain=es

  3. S. Aaronson, A. Arkhipov, The computational complexity of linear optics, in Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, New York, NY, USA, 2011 (Association for Computing Machinery), pp. 333–342

    Google Scholar 

  4. M. Aidelsburger, L. Barbiero, A. Bermudez, T. Chanda, A. Dauphin, D. Gonzá lez-Cuadra, P.R. Grzybowski, S. Hands, F. Jendrzejewski, J. Jünemann, G. Juzeliūnas, V. Kasper, A. Piga, S.-J. Ran, M. Rizzi, G. Sierra, L. Tagliacozzo, E. Tirrito, T.V. Zache, J. Zakrzewski, E. Zohar, M. Lewenstein, Cold atoms meet lattice gauge theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 380(2216) (2021)

    Google Scholar 

  5. A. Aloy, J. Tura, F. Baccari, A. Acín, M. Lewenstein, R. Augusiak, Device-independent witnesses of entanglement depth from two-body correlators. Phys. Rev. Lett. 123, 100507 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Altman, K.R. Brown, G. Carleo, L.D. Carr, E. Demler, C. Chin, B. DeMarco, S.E. Economou, M.A. Eriksson, K.-M.C. Fu, M. Greiner, K.R. Hazzard, R.G. Hulet, A.J. Kollár, B.L. Lev, M.D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe, K. Murch, Z. Nazario, K.-K. Ni, A.C. Potter, P. Roushan, M. Saffman, M. Schleier-Smith, I. Siddiqi, R. Simmonds, M. Singh, I. Spielman, K. Temme, D.S. Weiss, J. Vučković, V. Vuletić, J. Ye, M. Zwierlein, Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021)

    Google Scholar 

  7. K. Amini, J. Biegert, F. Calegari, A. Chacón, M.F. Ciappina, A. Dauphin, D.K. Efimov, C.F. de Morisson Faria, K. Giergiel, P. Gniewek, A.S. Landsman, M. Lesiuk, M. Mandrysz, A.S. Maxwell, R. Moszyński, L. Ortmann, J.A. Pérez-Hernández, A. Picón, E. Pisanty, J. Prauzner-Bechcicki, K. Sacha, N. Suárez, A. Zair, J. Zakrzewski, M. Lewenstein, Symphony on strong field approximation. Rep. Progress Phys. 82(11), 116001 (2019)

    Google Scholar 

  8. J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, J.I. Cirac. Analogue quantum chemistry simulation. Nature 574(7777), 215–218 (2019)

    Article  ADS  Google Scholar 

  9. S. Arora, B. Barak, Computational Complexity: A Modern Approach, 1st edn. (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  10. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M.P. Harrigan, M.J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T.S. Humble, S.V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P.V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J.R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M.Y. Niu, E. Ostby, A. Petukhov, J.C. Platt, C. Quintana, E.G. Rieffel, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy, K.J. Sung, M.D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z.J. Yao, P. Yeh, A. Zalcman, H. Neven, J. M. Martinis, Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Google Scholar 

  11. S. Asban, S. Mukamel, Scattering-based geometric shaping of photon-photon interactions. Phys. Rev. Lett. 123, 260502 (2019)

    Article  ADS  Google Scholar 

  12. F. Baccari, C. Gogolin, P. Wittek, A. Ací n, Verifying the output of quantum optimizers with ground-state energy lower bounds. Phys. Rev. Res. 2(4) (2020)

    Google Scholar 

  13. W. Bakr, J. Gillen, A. Peng, S. Fölling, M. Greiner, A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice. Nature 462(7269), 74–77 (2009)

    Article  ADS  Google Scholar 

  14. M.C. Bañuls, R. Blatt, J. Catani, A. Celi, J.I. Cirac, M. Dalmonte, L. Fallani, K. Jansen, M. Lewenstein, S. Montangero, C.A. Muschik, B. Reznik, E. Rico, L. Tagliacozzo, K. Van Acoleyen, F. Verstraete, U.-J. Wiese, M. Wingate, J. Zakrzewski, P. Zoller, Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74(8), 165 (2020)

    Google Scholar 

  15. T. Barthel, R. Hübener, Solving condensed-matter ground-state problems by semidefinite relaxations. Phys. Rev. Lett. 108, 200404 (2012)

    Article  ADS  Google Scholar 

  16. D.N. Basov, A. Asenjo-Garcia, P.J. Schuck, X. Zhu, A. Rubio, Polariton panorama. Nanophotonics 10(1), 549–577 (2021)

    Article  Google Scholar 

  17. T. Baumgratz, M.B. Plenio, Lower bounds for ground states of condensed matter systems. New J. Phys. 14(2), 023027 (2012)

    Google Scholar 

  18. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A.S. Zibrov, M. Endres, M. Greiner, V. Vuletic, M.D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579 (2017)

    Article  ADS  Google Scholar 

  19. K. Bharti, A. Cervera-Lierta, T.H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J.S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, A. Aspuru-Guzik, Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Blais, A.L. Grimsmo, S.M. Girvin, A. Wallraff, Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T.T. Wang, A.A. Michailidis, N. Maskara, W.W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletic, M.D. Lukin, Controlling quantum many-body dynamics in driven rydberg atom arrays. Science 371(6536), 1355–1359 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. O. Boada, A. Celi, J.I. Latorre, M. Lewenstein, Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012)

    Article  ADS  Google Scholar 

  23. A. Bohrdt, C.S. Chiu, G. Ji, M. Xu, D. Greif, M. Greiner, E. Demler, F. Grusdt, M. Knap, Classifying snapshots of the doped hubbard model with machine learning. Nat. Phys. 15(9), 921–924 (2019)

    Article  MATH  Google Scholar 

  24. F. Böttcher, J.-N. Schmidt, J. Hertkorn, K.S.H. Ng, S.D. Graham, M. Guo, T. Langen, T. Pfau, New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids. Rep. Progress Phys. 84(1), 012403 (2020)

    Google Scholar 

  25. T. Boulier, M.J. Jacquet, A. Maître, G. Lerario, F. Claude, S. Pigeon, Q. Glorieux, A. Amo, J. Bloch, A. Bramati, E. Giacobino, Microcavity polaritons for quantum simulation. Adv. Quantum Technol. 3(11), 2000052 (2020)

    Google Scholar 

  26. T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B.P. Lanyon, P. Zoller, R. Blatt, C.F. Roos, Probing renyi entanglement entropy via randomized measurements. Science 364(6437), 260–263 (2019)

    Article  ADS  Google Scholar 

  27. C.R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, L. Tarruell, Quantum liquid droplets in a mixture of bose-einstein condensates. Science 359(6373), 301–304 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J.M. Park, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583(7815), 215–220 (2020)

    Article  ADS  Google Scholar 

  29. Y. Cao, J. Romero, J.P. Olson, M. Degroote, P.D. Johnson, M. Kieferová, I.D. Kivlichan, T. Menke, B. Peropadre, N.P.D. Sawaya, S. Sim, L. Veis, A. Aspuru-Guzik, Quantum chemistry in the age of quantum computing. Chem. Rev. 119(19), 10856–10915 (2019)

    Article  Google Scholar 

  30. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová, Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019)

    Article  ADS  Google Scholar 

  31. I. Carusotto, A. Houck, A. Kollár, P. Roushan, D. Schuster, J. Simon, Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 03 (2020)

    Article  Google Scholar 

  32. A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I.B. Spielman, G. Juzeliūnas, M. Lewenstein, Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014)

    Article  ADS  Google Scholar 

  33. A. Cervera-Lierta, Icfo theory lecture: noisy intermediate-scale quantum algorithms 1 (2022). https://youtu.be/pyB9d8fVTt0

  34. A. Cervera-Lierta, Icfo theory lecture: Noisy intermediate-scale quantum algorithms 2 (2022). https://youtu.be/ooNEw64zfbg

  35. T. Chanda, M. Lewenstein, J. Zakrzewski, L. Tagliacozzo, Phase diagram of \(1+1\mathrm {D}\) abelian-higgs model and its critical point. Phys. Rev. Lett. 128, 090601 (2022)

    Google Scholar 

  36. T. Chanda, J. Zakrzewski, M. Lewenstein, L. Tagliacozzo, Confinement and lack of thermalization after quenches in the bosonic schwinger model. Phys. Rev. Lett. 124, 180602 (2020)

    Article  ADS  Google Scholar 

  37. L.W. Cheuk, M.A. Nichols, M. Okan, T. Gersdorf, V.V. Ramasesh, W.S. Bakr, T. Lompe, M.W. Zwierlein, Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015)

    Article  ADS  Google Scholar 

  38. C.S. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F. Grusdt, M. Greiner, D. Greif, String patterns in the doped hubbard model. Science 365(6450), 251–256 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. L.W. Clark, N. Schine, C. Baum, N. Jia, J. Simon, Observation of laughlin states made of light. Nature 582(7810), 41–45 (2020)

    Article  ADS  Google Scholar 

  40. T.M. Cover, J.A. Thomas, Elements of Information Theory. Wiley Series in Telecommunications and Signal Processing, 2nd edn. (Wiley-Interscience, New York, 2006)

    Google Scholar 

  41. M. Dalmonte, B. Vermersch, P. Zoller, Quantum simulation and spectroscopy of entanglement Hamiltonians. Nat. Phys. 14(8), 827–831 (2018)

    Article  Google Scholar 

  42. A. Dawid, J. Arnold, B. Requena, A. Gresch, M. Płodzień, K. Donatella, K.A. Nicoli, P. Stornati, R. Koch, M. Büttner, R. Okuła, G. Muñoz Gil, R.A. Vargas-Hernández, A. Cervera-Lierta, J. Carrasquilla, V. Dunjko, M. Gabrié, P. Huembeli, E. van Nieuwenburg, F. Vicentini, L. Wang, S.J. Wetzel, G. Carleo, E. Greplova, R. Krems, F. Marquardt, M. Tomza, M. Lewenstein, A. Dauphin, Modern applications of machine learning in quantum sciences (2022), arXiv:2204.04198(quant-ph)

    Google Scholar 

  43. A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, L. Marrucci, Two-dimensional topological quantum walks in the momentum space of structured light. Optica 7(2), 108–114 (2020)

    Article  ADS  Google Scholar 

  44. D.P. DiVincenzo, The physical implementation of quantum computation. Fortschritte der Physik 48(9–11), 771–783 (2000)

    Article  ADS  MATH  Google Scholar 

  45. A. Doherty, Y.-C. Liang, B. Toner, S. Wehner, The quantum moment problem and bounds on entangled multi-prover games. Proceedings of the Annual IEEE Conference on Computational Complexity (2008), pp. 199–210

    Google Scholar 

  46. S. Ebadi, A. Keesling, M. Cain, T.T. Wang, H. Levine, D. Bluvstein, G. Semeghini, A. Omran, J. Liu, R. Samajdar, X.-Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi, S. Sachdev, N. Gemelke, L. Zhou, S. Choi, H. Pichler, S. Wang, M. Greiner, V. Vuletic, M.D. Lukin, Quantum optimization of maximum independent set using rydberg atom arrays. Science 376(6598), 1209–1215 (2022). https://doi:10.1126/science.abo6587

    Article  ADS  Google Scholar 

  47. S. Ebadi, T.T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W.W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, M.D. Lukin, Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595(7866), 227–232 (2021)

    Article  ADS  Google Scholar 

  48. A. Elben, S.T. Flammia, H.-Y. Huang, R. Kueng, J. Preskill, B. Vermersch, P. Zoller, The randomized measurement toolbox. Nat Rev Phys 5, 9–24 (2023). https://doi.org/10.1038/s42254-022-00535-2

    Article  Google Scholar 

  49. A. Elben, B. Vermersch, M. Dalmonte, J.I. Cirac, P. Zoller, Rényi entropies from random quenches in atomic hubbard and spin models. Phys. Rev. Lett. 120, 050406 (2018)

    Article  ADS  Google Scholar 

  50. A. Elben, J. Yu, G. Zhu, M. Hafezi, F. Pollmann, P. Zoller, B. Vermersch, Many-body topological invariants from randomized measurements in synthetic quantum matter. Sci. Adv. 6(15), eaaz3666 (2020)

    Google Scholar 

  51. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution. Quantum Phys. (2000). arXiv

    Google Scholar 

  52. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  53. J. Fraxanet, D. Gonzá lez-Cuadra, T. Pfau, M. Lewenstein, T. Langen, L. Barbiero, Topological quantum critical points in the extended bose-hubbard model. Phys. Rev. Lett. 128(4) (2022)

    Google Scholar 

  54. A. Glos, A. Krawiec, Z. Zimborás, Space-efficient binary optimization for variational quantum computing. npj Quantum Inf. 8(1), 39 (2022)

    Google Scholar 

  55. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature 415(6867), 39–44 (2002)

    Article  ADS  Google Scholar 

  56. C. Gross, W.S. Bakr, Quantum gas microscopy for single atom and spin detection. Nat. Phys. 17(12), 1316–1323 (2021)

    Article  Google Scholar 

  57. C. Huang, F. Ye, X. Chen, Y.V. Kartashov, V.V. Konotop, L. Torner, Localization-delocalization wavepacket transition in pythagorean aperiodic potentials. Sci. Rep. 6(1), 32546 (2016)

    Google Scholar 

  58. H. Hübener, U. De Giovannini, C. Schäfer, J. Andberger, M. Ruggenthaler, J. Faist, A. Rubio, Engineering quantum materials with chiral optical cavities. Nat. Mater. 20(4), 438–442 (2021)

    Article  ADS  Google Scholar 

  59. W.J. Huggins, J.R. McClean, N.C. Rubin, Z. Jiang, N. Wiebe, K.B. Whaley, R. Babbush, Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. npj Quantum Inf. 7(1), 23 (2021)

    Google Scholar 

  60. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    Article  ADS  Google Scholar 

  61. S. Julià-Farré, M. Müller, M. Lewenstein, A. Dauphin, Self-trapped polarons and topological defects in a topological mott insulator. Phys. Rev. Lett. 125, 240601 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  62. D. Kennes, M. Claassen, L. Xian, A. Georges, A. Millis, J. Hone, C. Dean, D. Basov, A. Pasupathy, A. Rubio, Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 1–9 (2021)

    Article  Google Scholar 

  63. J. King, S. Yarkoni, J. Raymond, I. Ozfidan, A.D. King, M.M. Nevisi, J.P. Hilton, C.C. McGeoch, Quantum annealing amid local ruggedness and global frustration. J. Phys. Soc. Jpn. 88(6), 061007 (2019)

    Google Scholar 

  64. E. Knill, R. Laflamme, G. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  65. M.S. Könz, W. Lechner, H.G. Katzgraber, M. Troyer, Scaling overhead of embedding optimization problems in quantum annealing. Phys. Rev. X Quantum 2, 040322 (2021)

    ADS  Google Scholar 

  66. C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M.K. Joshi, P. Jurcevic, C.A. Muschik, P. Silvi, R. Blatt, C.F. Roos, P. Zoller, Self-verifying variational quantum simulation of lattice models. Nature 569(7756), 355–360 (2019)

    Article  ADS  Google Scholar 

  67. K. Kottmann, A. Haller, A. Acín, G.E. Astrakharchik, M. Lewenstein, Supersolid-superfluid phase separation in the extended bose-hubbard model. Phys. Rev. B 104, 174514 (2021)

    Article  ADS  Google Scholar 

  68. K. Kottmann, P. Huembeli, M. Lewenstein, A. Acín, Unsupervised phase discovery with deep anomaly detection. Phys. Rev. Lett. 125, 170603 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  69. S. Kuhr, Quantum-gas microscopes: a new tool for cold-atom quantum simulators. Natl. Sci. Rev. 3(2), 170–172 (2016)

    Article  Google Scholar 

  70. C. Lagoin, U. Bhattacharya, T. Grass, R. Chhajlany, T. Salamon, K. Baldwin, L. Pfeiffer, M. Lewenstein, M. Holzmann, F. Dubin, Extended Bose-Hubbard model with dipolar excitons. Nature 609, 485–489 (2022). https://doi.org/10.1038/s41586-022-05123-z

    Article  ADS  Google Scholar 

  71. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  72. J.B. Lasserre, Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  73. P.A. Lee, From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics. Rep. Progress Phys. 71(1), 012501 (2007)

    Google Scholar 

  74. S. Lee, J. Lee, H. Zhai, Y. Tong, A.M. Dalzell, A. Kumar, P. Helms, J. Gray, Z.-H. Cui, W. Liu, M. Kastoryano, R.B. Babbush, J. Preskill, D.R. Reichman, E.T. Campbell, E.F. Valeev, L. Lin, G.K.-L.C. Chan, Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat Commun 14, 1952 (2023). https://doi.org/10.1038/s41467-023-37587-6

    Article  ADS  Google Scholar 

  75. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  Google Scholar 

  76. M. Lewenstein, M. Ciappina, E. Pisanty, J. Rivera-Dean, P. Stammer, T. Lamprou, P. Tzallas, Generation of optical schrödinger cat states in intense laser - matter interactions. Nat. Phys. 17 (2021)

    Google Scholar 

  77. M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University Press, Oxford, 2012)

    Book  MATH  Google Scholar 

  78. X. Lu, P. Stepanov, W. Yang, M. Xie, M.A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A.H. MacDonald, D.K. Efetov, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574(7780), 653–657 (2019)

    Article  ADS  Google Scholar 

  79. R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon, D.I. Schuster, A dissipatively stabilized mott insulator of photons. Nature 566(7742), 51–57 (2019)

    Article  ADS  Google Scholar 

  80. D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  81. I.I. Manin, Vychislimoe i nevychislimoe (Sov. radio, Moskva, 1980)

    Google Scholar 

  82. E.A. Martinez, C.A. Muschik, P. Schindler, D. Nigg, A. Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz, P. Zoller, R. Blatt, Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534(7608), 516–519 (2016)

    Article  ADS  Google Scholar 

  83. D.A. Mazziotti, Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix. Phys. Rev. A 65, 062511 (2002)

    Article  ADS  Google Scholar 

  84. A.J. McCaskey, Z.P. Parks, J. Jakowski, S.V. Moore, T.D. Morris, T.S. Humble, R.C. Pooser, Quantum chemistry as a benchmark for near-term quantum computers. npj Quantum Inf. 5(1), 99 (2019)

    Google Scholar 

  85. N. Moll, P. Barkoutsos, L.S. Bishop, J.M. Chow, A. Cross, D.J. Egger, S. Filipp, A. Fuhrer, J.M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller, W. Riess, G. Salis, J. Smolin, I. Tavernelli, K. Temme, Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018)

    Google Scholar 

  86. C. Monroe, W.C. Campbell, L.-M. Duan, Z.-X. Gong, A.V. Gorshkov, P.W. Hess, R. Islam, K. Kim, N.M. Linke, G. Pagano, P. Richerme, C. Senko, N.Y. Yao, Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  87. S. Mugel, A. Dauphin, P. Massignan, L. Tarruell, M. Lewenstein, C. Lobo, A. Celi, Measuring Chern numbers in Hofstadter strips. SciPost Phys. 3, 012 (2017)

    Article  ADS  Google Scholar 

  88. G. Müller-Rigat, A. Aloy, M. Lewenstein, I. Frérot, Inferring nonlinear many-body bell inequalities from average two-body correlations: Systematic approach for arbitrary spin-j ensembles. PRX Quantum 2(3), (2021)

    Google Scholar 

  89. G. Müller-Rigat, M. Lewenstein, I. Frérot, Probing quantum entanglement from magnetic-sublevels populations: beyond spin squeezing inequalities, Quantum 6, 887 (2022). https://doi.org/10.22331/q-2022-12-29-887

    Article  Google Scholar 

  90. M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, K. Fujisawa, Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm. J. Chem. Phys. 114(19), 8282–8292 (2001)

    Article  ADS  Google Scholar 

  91. M. Navascués, S. Pironio, A. Acín, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008)

    Google Scholar 

  92. F. Pan, K. Chen, P. Zhang, Solving the sampling problem of the sycamore quantum. Phys. Rev. Lett. 129, 090502 (2022)

    Article  ADS  Google Scholar 

  93. F. Pan, P. Zhang, Simulation of quantum circuits using the big-batch tensor network method. Phys. Rev. Lett. 128, 030501 (2022)

    Article  ADS  Google Scholar 

  94. G.S. Paraoanu, Recent progress in quantum simulation using superconducting circuits. J. Low Temp. Phys. 175(5–6), 633–654 (2014)

    Article  ADS  Google Scholar 

  95. P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  96. A. Perdomo-Ortiz, A. Feldman, A. Ozaeta, S.V. Isakov, Z. Zhu, B. O’Gorman, H.G. Katzgraber, A. Diedrich, H. Neven, J. de Kleer, B. Lackey, R. Biswas, Readiness of quantum optimization machines for industrial applications. Phys. Rev. Appl. 12, 014004 (2019)

    Article  ADS  Google Scholar 

  97. S. Pironio, M. Navascué s, A. Acín, Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)

    Google Scholar 

  98. J. Preskill, Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  99. S.-J. Ran, E. Tirrito, C. Peng, X. Chen, L. Tagliacozzo, G. Su, M. Lewenstein, Tensor Network Contractions (Springer International Publishing, New York, 2020)

    Book  MATH  Google Scholar 

  100. M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. Schindler, T. Monz, A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022). https://doi.org/10.1038/s41567-022-01658-0

    Article  Google Scholar 

  101. T. Salamon, A. Celi, R.W. Chhajlany, I. Frérot, M. Lewenstein, L. Tarruell, D. Rakshit, Simulating twistronics without a twist. Phys. Rev. Lett. 125, 030504 (2020)

    Article  ADS  Google Scholar 

  102. S.D. Sarma, Quantum computing has a hype problem. MIT Technology Review (2022). https://www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem/

  103. N. Schine, A. Ryou, A. Gromov, A. Sommer, J. Simon, Synthetic landau levels for photons. Nature 534(7609), 671–675 (2016)

    Article  ADS  Google Scholar 

  104. F. Schlawin, D.M. Kennes, M.A. Sentef, Cavity quantum materials. Appl. Phys. Rev. 9(1), 011312 (2022)

    Google Scholar 

  105. P. Scholl, M. Schuler, H.J. Williams, A.A. Eberharter, D. Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T.C. Lang, T. Lahaye, A.M. Läuchli, A. Browaeys, Quantum simulation of 2d antiferromagnets with hundreds of rydberg atoms. Nature 595(7866), 233–238 (2021)

    Article  ADS  Google Scholar 

  106. M. Schuld, N. Killoran, Is quantum advantage the right goal for quantum machine learning? PRX Quantum 3, 030101 (2022)

    Article  ADS  Google Scholar 

  107. G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T.T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletic, M.D. Lukin, Probing topological spin liquids on a programmable quantum simulator. Science 374(6572), 1242–1247 (2021)

    Article  ADS  Google Scholar 

  108. J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467(7311), 68–72 (2010)

    Article  ADS  Google Scholar 

  109. P. Sierant, M. Lewenstein, J. Zakrzewski, Polynomially filtered exact diagonalization approach to many-body localization. Phys. Rev. Lett. 125, 156601 (2020)

    Article  ADS  Google Scholar 

  110. P. St-Jean, A. Dauphin, P. Massignan, B. Real, O. Jamadi, M. Milicevic, A. Lemaître, A. Harouri, L. Le Gratiet, I. Sagnes, S. Ravets, J. Bloch, A. Amo, Measuring topological invariants in a polaritonic analog of graphene. Phys. Rev. Lett. 126, 127403 (2021)

    Article  ADS  Google Scholar 

  111. P. Stepanov, I. Das, X. Lu, A. Fahimniya, K. Watanabe, T. Taniguchi, F.H.L. Koppens, J. Lischner, L. Levitov, D.K. Efetov, Untying the insulating and superconducting orders in magic-angle graphene. Nature 583(7816), 375–378 (2020)

    Article  ADS  Google Scholar 

  112. D. Stilck França, R. García-Patrón, Limitations of optimization algorithms on noisy quantum devices. Nat. Phys. 17(11), 1221–1227 (2021)

    Article  Google Scholar 

  113. R.N. Tazhigulov, S.-N. Sun, R. Haghshenas, H. Zhai, A.T.K. Tan, N.C. Rubin, R. Babbush, A.J. Minnich, G.K.-L. Chan, Simulating challenging correlated molecules and materials on the sycamore quantum processor, PRXQuantum 3, 040318 (2022). https://link.aps.org/doi/10.1103/PRXQuantum.3.040318

    ADS  Google Scholar 

  114. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G.H. Booth, J. Tennyson, The Variational Quantum Eigensolver: A review of methods and best practices, Physics Reports 986, (2022). https://doi.org/10.1016/j.physrep.2022.08.003

  115. N. Tishby, Statistical physics and machine learning: a 30 year perspective. https://www.youtube.com/watch?v=BUfnIT92ukM

  116. A. Trabesinger, Quantum simulation. Nat. Phys. 8(4), 263–263 (2012)

    Article  Google Scholar 

  117. J. Tura, R. Augusiak, A.B. Sainz, T. Vé rtesi, M. Lewenstein, A. Acín, Detecting nonlocality in many-body quantum states. Science 344(6189), 1256–1258 (2014)

    Google Scholar 

  118. L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  119. P. Wang, Y. Zheng, X. Chen, C. Huang, Y.V. Kartashov, L. Torner, V.V. Konotop, F. Ye, Localization and delocalization of light in photonic moiré lattices. Nature 577(7788), 42–46 (2019)

    Article  ADS  Google Scholar 

  120. S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  ADS  Google Scholar 

  121. R. Yamada, M. Lewenstein, Interpreting quantum randomness. AI & Music S+T+ARTS (2021). https://www.youtube.com/watch?v=Z-GLxgg0Z18

  122. J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.-X. Gong, C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551(7682), 601–604 (2017)

    Article  ADS  Google Scholar 

  123. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan, Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Antonio Acín and Leticia Taruell for their contributions to the manuscript. Over several years, we have been publishing mini-reviews of our “achievements” on the ICFO Web Page in the News section [1]. These text were edited with the help of Alina Hirschmann, whose irreplaceable help is highly appreciated. We have adopted here some of these mini-reviews, mostly of the papers from our groups, but we also acknowledge courtesy of Adrian Bachtold, Alexandre Dauphin, Dima Efetov and Lluis Torner for being able to use their texts. JF, TS and ML acknowledge support from: ERC AdG NOQIA; Agencia Estatal de Investigación (R&D project CEX2019-000910-S, funded by MCIN / AEI / 10.13039 / 501100011033, Plan National FIDEUA PID2019-106901GB-I00, FPI, QUANTERA MAQS PCI2019-111828-2, Proyectos de I+D+I “Retos Colaboración” QUSPIN RTC2019-007196-7); Fundació Cellex; Fundació Mir-Puig; Generalitat de Catalunya through the European Social Fund FEDER and CERCA program (AGAUR Grant No. 2017 SGR 134, QuantumCAT U16-011424, co-funded by ERDF Operational Program of Catalonia 2014–2020); EU Horizon 2020 FET-OPEN OPTOlogic (Grant No 899794); National Science Centre, Poland (Symfonia Grant No. 2016/20/W/ST4/00314); European Union’s Horizon 2020 research and innovation programme under the Marie-Skołdowska-Curie grant agreement No 101029393 (STREDCH) and No 847648 (“La Caixa” Junior Leaders fellowships ID100010434: LCF/BQ/PI19/11690013, LCF/BQ/PI20/11760031, LCF/BQ/PR20/11770012, LCF/BQ/PR21/11840013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Lewenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fraxanet, J., Salamon, T., Lewenstein, M. (2023). The Coming Decades of Quantum Simulation. In: Citro, R., Lewenstein, M., Rubio, A., Schleich, W.P., Wells, J.D., Zank, G.P. (eds) Sketches of Physics. Lecture Notes in Physics, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-031-32469-7_4

Download citation

Publish with us

Policies and ethics