Skip to main content
Log in

Recent Progress in Quantum Simulation Using Superconducting Circuits

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Quantum systems are notoriously difficult to simulate with classical means. Recently, the idea of using another quantum system—which is experimentally more controllable—as a simulator for the original problem has gained significant momentum. Amongst the experimental platforms studied as quantum simulators, superconducting qubits are one of the most promising, due to relative straightforward scalability, easy design, and integration with standard electronics. Here I review the recent state-of-the art in the field and the prospects for simulating systems ranging from relativistic quantum fields to quantum many-body systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467488 (1982)

    MathSciNet  Google Scholar 

  2. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985)

    MATH  MathSciNet  ADS  Google Scholar 

  3. S. Lloyd, Universal quantum simulators. Science 273, 1073 (1996)

    MATH  MathSciNet  ADS  Google Scholar 

  4. M.A. Nielsen, I.C. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  5. G.S. Paraoanu, Quantum computing: theoretical possibility versus practical possibility. Phys. Perspect. 13, 359 (2011)

    MathSciNet  ADS  Google Scholar 

  6. I. Buluta, F. Nori, Quantum simulators. Science 326, 108 (2009)

    ADS  Google Scholar 

  7. I. Buluta, S. Ashhab, F. Nori, Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    ADS  Google Scholar 

  8. J.I. Cirac, P. Zoller, Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)

    Google Scholar 

  9. I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    ADS  Google Scholar 

  10. P. Hauke, F.M. Cucchietti, L. Tagliacozzo, I. Deutsch, M. Lewenstein, Can one trust quantum simulators? Rep. Prog. Phys. 75, 082401 (2012)

    ADS  Google Scholar 

  11. M. Lewenstein et al., Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007)

    ADS  Google Scholar 

  12. Y. Makhlin, G. Schön, A. Shnirman, Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    ADS  Google Scholar 

  13. M.H. Devoret, A. Wallraff, J.M. Martinis, Superconducting qubits: a short review. arXiv:0411174

  14. J. Clarke, F. Wilhelm, Superconducting quantum bits. Nature 453, 1031 (2008)

    ADS  Google Scholar 

  15. G. Wendin, V.S. Shumeiko, Superconducting quantum circuits, qubits and computing, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (American Scientific Publishers, Los Angeles, 2006), pp. 223–309

    Google Scholar 

  16. R.J. Schoelkopf, S.M. Girvin, Wiring up quantum systems. Nature 451, 664 (2008)

    ADS  Google Scholar 

  17. J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    ADS  Google Scholar 

  18. M.H. Devoret, R.J. Schoelkopf, Superconducting circuits for quantum information: an outlook. Science 339, 1169 (2013)

    MathSciNet  ADS  Google Scholar 

  19. R.C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, H. Wang, J. Wenner, M. Steffen, A.N. Cleland, J.M. Martinis, Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409 (2010)

    Google Scholar 

  20. A. Dewes, F.R. Ong, V. Schmitt, R. Lauro, N. Boulant, P. Bertet, D. Vion, D. Esteve, Characterization of a two-transmon processor with individual single-shot qubit readout. Phys. Rev. Lett. 108, 057002 (2012)

    ADS  Google Scholar 

  21. A.O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, J.S. Tsai, Quantum coherent tunable coupling of superconducting qubits. Science 316, 723 (2007)

    ADS  Google Scholar 

  22. J. Majer, J.M. Chow, J.M. Gambetta, J. Koch, B.R. Johnson, J.A. Schreier, L. Frunzio, D.I. Schuster, A.A. Houck, A. Wallraff, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)

    ADS  Google Scholar 

  23. R.C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, T. Yamamoto, A.N. Cleland, J.M. Martinis, Quantum coherent tunable coupling of superconducting qubits. Phys. Rev. Lett. 106, 060501 (2011)

    ADS  Google Scholar 

  24. C. Rigetti, A. Blais, M. Devoret, Protocol for universal gates in optimally biased superconducting qubits. Phys. Rev. Lett. 94, 240502 (2005)

    ADS  Google Scholar 

  25. G.S. Paraoanu, Microwave-induced coupling of superconducting qubits. Phys. Rev. B 74, 140504(R) (2006)

    ADS  Google Scholar 

  26. J. Li, K. Chalapat, G.S. Paraoanu, Entanglement of superconducting qubits via microwave fields: classical and quantum regimes. Phys. Rev. B 78, 064503 (2008)

    ADS  Google Scholar 

  27. C. Rigetti, M. Devoret, Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies. Phys. Rev. B 81, 134507 (2010)

    ADS  Google Scholar 

  28. J.M. Chow, J.M. Gambetta, A.W. Cross, S.T. Merkel, C. Rigetti, M. Steffen, Microwave-activated conditional-phase gate for superconducting qubits. New J. Phys. 15, 115012 (2013)

    ADS  Google Scholar 

  29. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)

    ADS  Google Scholar 

  30. I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869 (2003)

    ADS  Google Scholar 

  31. J. Claudon, F. Balestro, F.W.J. Hekking, O. Buisson, Coherent oscillations in a superconducting multilevel quantum system. Phys. Rev. Lett. 93, 187003 (2004)

    ADS  Google Scholar 

  32. J.M. Martinis, S. Nam, J. Aumentado, C. Urbina, Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)

    ADS  Google Scholar 

  33. G.S. Paraoanu, Running-phase state in a Josephson washboard potential. Phys. Rev. B 72, 134528 (2005)

    ADS  Google Scholar 

  34. J. Walter, E. Tholén, D.B. Haviland, J. Söstrand, Pulse and hold strategy for switching current measurements. Phys. Rev. B 75, 094515 (2007)

    ADS  Google Scholar 

  35. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    ADS  Google Scholar 

  36. A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    ADS  Google Scholar 

  37. N. Katz, M. Ansmann, R.C. Bialczak, E. Lucero, R. McDermott, M. Neeley, M. Steffen, E.M. Weig, A.N. Cleland, J.M. Martinis, A.N. Korotkov, Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)

    ADS  Google Scholar 

  38. G.S. Paraoanu, Interaction-free measurements with superconducting qubits. Phys. Rev. Lett. 97, 180406 (2006)

    ADS  Google Scholar 

  39. N. Katz, M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A.N. Cleland, J.M. Martinis, A.N. Korotkov, Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    ADS  Google Scholar 

  40. A.N. Jordan, A.N. Korotkov, Uncollapsing the wavefunction by undoing quantum measurements. Contemp. Phys. 51, 125 (2010)

    ADS  Google Scholar 

  41. G.S. Paraoanu, Generalized partial measurements. Europhys. Lett. 93, 64002 (2011)

    ADS  Google Scholar 

  42. G.S. Paraoanu, Partial measurements and the realization of quantum-mechanical counterfactuals. Found. Phys. 41, 1214 (2011)

    MATH  MathSciNet  ADS  Google Scholar 

  43. M.D. Reed, L. DiCarlo, B.R. Johnson, L. Sun, D.I. Schuster, L. Frunzio, R.J. Schoelkopf, High-fidelity readout in circuit quantum electrodynamics using the Jaynes–Cummings nonlinearity. Phys. Rev. Lett. 105, 173601 (2010)

    ADS  Google Scholar 

  44. F. Mallet, F.R. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet, D. Vion, D. Esteve, Single-shot qubit readout in circuit quantum electrodynamics. Nat. Phys. 5, 791 (2009)

    Google Scholar 

  45. D. Risté, C.C. Bultink, K.W. Lehnert, L. DiCarlo, Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys. Rev. Lett. 109, 240502 (2012)

    ADS  Google Scholar 

  46. R. Vijay, C. Macklin, D.H. Slichter, S.J. Weber, K.W. Murch, R. Naik, A.N. Korotkov, I. Siddiqi, Quantum feedback control of a superconducting qubit: Persistent Rabi oscillations. Nature 490, 77 (2012)

    ADS  Google Scholar 

  47. P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M.H. Devoret, F. Mallet, B. Huard, Persistent control of a superconducting qubit by stroboscopic measurement feedback. Phys. Rev. X 3, 021008 (2013)

    Google Scholar 

  48. G. de Lange, D. Risté, M.J. Tiggelman, C. Eichler, L. Tornberg, G. Johansson, A. Wallraff, R.N. Schouten, L. DiCarlo, Reversing quantum trajectories with analog feedback. arXiv:1311.5472

  49. A.L. Rakhmanov, A.M. Zagoskin, S. Savel’ev, F. Nori, Quantum metamaterials: electromagnetic waves in a Josephson qubit line. Phys. Rev. B 77, 144507 (2008)

    ADS  Google Scholar 

  50. A.M. Zagoskin, Quantum Engineering: Theory and Design of Quantum Coherent Structures (Cambridge University Press, Cambridge, 2011). Ch. 6.1

    Google Scholar 

  51. A. Das, B.K. Chakrabarti, Quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  52. H.F. Trotter, On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545 (1959)

    MATH  MathSciNet  Google Scholar 

  53. M. Suzuki, Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics. J. Math. Phys. 26, 601 (1985)

    MATH  MathSciNet  ADS  Google Scholar 

  54. M. Neeley, R.C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A.D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A.N. Cleland, J.M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570 (2010)

    ADS  Google Scholar 

  55. A. Fedorov, L. Steffen, M. Baur, M.P. da Silva, A. Wallraff, Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170 (2012)

    ADS  Google Scholar 

  56. J.M. Chow, J.M. Gambetta, A.D. Córcoles, S.T. Merkel, J.A. Smolin, C. Rigetti, S. Poletto, G.A. Keefe, M.B. Rothwell, J.R. Rozen, M.B. Ketchen, M. Steffen, Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012)

    ADS  Google Scholar 

  57. M.D. Reed, L. DiCarlo, S.E. Nigg, L. Sun, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382 (2012)

    ADS  Google Scholar 

  58. U. Las Heras, A. Mezzacapo, L. Lamata, S. Filipp, A. Wallraff, E. Solano, Digital quantum simulation of spin systems in superconducting circuits. arXiv:1311.7626

  59. K.R. Brown, R.J. Clark, I.L. Chuang, Limitations of quantum simulation examined by simulating a pairing hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett. 97, 050504 (2006)

    ADS  Google Scholar 

  60. M.A. Sillanpää, J. Li, K. Cicak, F. Altomare, J.I. Park, R.W. Simmonds, G.S. Paraoanu, P.J. Hakonen, Autler-Townes effect in a superconducting three-level system. Phys. Rev. Lett. 103, 193601 (2009)

    ADS  Google Scholar 

  61. M. Baur, S. Filipp, R. Bianchetti, J.M. Fink, M. Göppl, L. Steffen, P.J. Leek, A. Blais, A. Wallraff, Measurement of Autler-Townes and Mollow Transitions in a strongly driven superconducting qubit. Phys. Rev. Lett. 102, 243602 (2009)

    ADS  Google Scholar 

  62. A.A. Abdumalikov Jr, O. Astafiev, A.M. Zagoskin, YuA Pashkin, Y. Nakamura, J.S. Tsai, Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010)

    ADS  Google Scholar 

  63. W.R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T.A. Ohki, J.S. Kline, D.P. Pappas, Direct observation of coherent population trapping in a superconducting artificial atom. Phys. Rev. Lett. 104, 163601 (2010)

    ADS  Google Scholar 

  64. M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, E. Lucero, A.D. O’Connell, D. Sank, H. Wang, J. Wenner, A.N. Cleland, M.R. Geller, J.M. Martinis, Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722725 (2009)

    Google Scholar 

  65. J. Li, G.S. Paraoanu, K. Cicak, F. Altomare, J.I. Park, R.W. Simmonds, M.A. Sillanpää, P.J. Hakonen, Decoherence, Autler-Townes effect, and dark states in two-tone driving of a three-level superconducting system. Phys. Rev. B. 84, 104527 (2011)

    ADS  Google Scholar 

  66. J. Li, G.S. Paraoanu, K. Cicak, F. Altomare, J.I. Park, R.W. Simmonds, M.A. Sillanpää, P.J. Hakonen, Dynamical Autler-Townes control of a phase qubit. Sci. Rep. 2, 645 (2012)

    ADS  Google Scholar 

  67. J. Li, M.P. Silveri, K.S. Kumar, J.M. Pirkkalainen, A. Vepsäläinen, W.C. Chien, J. Tuorila, M.A. Sillanpää, P.J. Hakonen, E.V. Thuneberg, G.S. Paraoanu, Motional averaging in a superconducting qubit. Nat. Commun. 4, 1420 (2013)

    ADS  Google Scholar 

  68. J.S. Pedernales, R. Di Candia, D. Ballester, E. Solano, Quantum simulations of relativistic quantum physics in circuit QED. New J. Phys. 15, 055008 (2013)

    MathSciNet  ADS  Google Scholar 

  69. B. Doucot, L.B. Ioffe, J. Vidal, Discrete non-Abelian gauge theories in Josephson-junction arrays and quantum computation. Phys. Rev. B 69, 214501 (2004)

    ADS  Google Scholar 

  70. S.P. Jordan, K.S.M. Lee, J. Preskill, Quantum algorithms for quantum field theories. Science 336, 1130 (2013)

    ADS  Google Scholar 

  71. P. Lähteenmäki, G.S. Paraoanu, J. Hassel, P.J. Hakonen, Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. USA 110, 4234–4238 (2013)

    ADS  Google Scholar 

  72. C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011)

    ADS  Google Scholar 

  73. V.V. Dodonov, V.I. Man’ko, O.V. Man’ko, Correlated states in quantum electronics (resonant circuit). J. Sov. Laser Res. 10, 413 (1989)

    Google Scholar 

  74. E. Yablonovitch, J.P. Heritage, D.E. Aspnes, Y. Yafet, Virtual photoconductivity. Phys. Rev. Lett. 63, 976 (1989)

    ADS  Google Scholar 

  75. E. Yablonovitch, Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh-Davies-Fulling-DeWitt radiation and the nonadiabatic Casimir effect. Phys. Rev. Lett. 62, 1742 (1989)

    ADS  Google Scholar 

  76. J. Li, G.S. Paraoanu, Generation and propagation of entanglement in driven coupled-qubit systems. New J. Phys. 11, 113020 (2009)

    ADS  Google Scholar 

  77. S. Felicetti, M. Sanz, L. Lamata, G. Romero, G. Johansson, P. Delsing, E. Solano, Dynamical Casimir effect entangles artificial atoms. arXiv:1402.4451

  78. T. Fujii, S. Matsuo, N. Hatakenaka, S. Kurihara, A. Zeilinger, Quantum circuit analog of the dynamical Casimir effect. Phys. Rev. B 84, 174521 (2011)

    ADS  Google Scholar 

  79. P.D. Nation, M.P. Blencowe, A.J. Rimberg, E. Buks, Analogue Hawking radiation in a dc-SQUID array transmission line. Phys. Rev. Lett. 103, 087004 (2009)

    ADS  Google Scholar 

  80. C. Barceló, S. Liberati, M. Viser, Analogue gravity. Living Rev. Rel. 14, 3 (2011)

    Google Scholar 

  81. G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  82. P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1 (2012)

    ADS  Google Scholar 

  83. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D. 7, 2333 (1973)

    MathSciNet  ADS  Google Scholar 

  84. S.W. Hawking, Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

    MathSciNet  ADS  Google Scholar 

  85. A. Almheiri, D. Marolf, J. Polchinski, J. Sully, Black holes: complementarity or firewalls? J. High Energy Phys. 02, 062 (2013)

    MathSciNet  ADS  Google Scholar 

  86. S.L. Braunstein, Black hole entropy as entropy of entanglement, or it’s curtains for the equivalence principle, [arXiv:0907.1190v1] published as S. L. Braunstein, S. Pirandola and K. Życzkowski, Better Late than Never: Information Retrieval from Black Holes. Phys. Rev. Lett. 110, 101301 (2013)

    Google Scholar 

  87. N. Friis, A.R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson, I. Fuentes, Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)

    ADS  Google Scholar 

  88. H.J. Briegel, D.E. Browne, W. Dür, R. Raussendorf, M. Van den Nest, Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)

    Google Scholar 

  89. D.E. Bruschi, C. Sabín, P. Kok, G. Johansson, P. Delsing, I. Fuentes, Towards universal quantum computation through relativistic motion. arXiv:1311.5619

  90. T. Banks, L. Susskind, J. Kogut, Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises. Phys. Rev. D 13, 10431053 (1976)

    Google Scholar 

  91. D. Marcos, P. Rabl, E. Rico, P. Zoller, Superconducting circuits for quantum simulation of dynamical gauge fields. Phys. Rev. Lett. 111, 110504 (2013)

    ADS  Google Scholar 

  92. P.W. Anderson, Localized magnetic states in metals. Phys. Rev. 124, 41 (1961)

    MathSciNet  ADS  Google Scholar 

  93. J.J. García-Ripoll, E. Solano, M.A. Martin-Delgado, Quantum simulation of Anderson and Kondo lattices with superconducting qubits. Phys. Rev. B 77, 024522 (2008)

    ADS  Google Scholar 

  94. J. Ghosh, Simulating Anderson localization via a quantum walk on a one-dimensional lattice of superconducting qubits. Phys. Rev. A 89, 022309 (2014)

    ADS  Google Scholar 

  95. M.J. Hartmann, Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)

    Google Scholar 

  96. A. Greentree, C. Tahan, J. Cole, L. Hollenberg, Quantum phase transitions of light. Nat. Phys. 2, 856 (2006)

    Google Scholar 

  97. M.J. Hartmann, F.G.S.L. Brandaõ, M.B. Plenio, Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527 (2008)

    Google Scholar 

  98. D.G. Angelakis, M.F. Santos, S. Bose, Photon blockade induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007)

    ADS  Google Scholar 

  99. J. Jin, D. Rossini, R. Fazio, M. Leib, M.J. Hartmann, Photon solid phases in driven arrays of nonlinearly coupled cavities. Phys. Rev. Lett. 110, 163605 (2013)

    ADS  Google Scholar 

  100. S. Schmidt, J. Koch, Circuit QED lattices: towards quantum simulation with superconducting circuits. Annalen der Physik 525, 395–412 (2013)

    ADS  Google Scholar 

  101. S. Schmidt, D. Gerace, A.A. Houck, G. Blatter, H.E. Türeci, Nonequilibrium delocalization-localization transition of photons in circuit quantum electrodynamics. Phys. Rev. B 82, 100507 (2010)

    ADS  Google Scholar 

  102. J. Raftery, D. Sadri, S. Schmidt, H.E.Türeci, A. A. Houck, Observation of a dissipation-induced classical to quantum, transition. arXiv:1312.2963

  103. Gh-S Paraoanu, S. Kohler, F. Sols, A.J. Leggett, The Josephson plasmon as a Bogoliubov quasiparticle. J. Phys. B 34, 4689 (2001)

    ADS  Google Scholar 

  104. A. Nunnenkamp, J. Koch, S.M. Girvin, Synthetic gauge fields and homodyne transmission in Jaynes–Cummings lattices. New J. Phys. 13, 095008 (2011)

    ADS  Google Scholar 

  105. J. Koch, A.A. Houck, K. Le Hur, S.M. Girvin, Time-reversal symmetry breaking in circuit-QED based photon lattices. Phys. Rev. A 82, 043811 (2010)

    ADS  Google Scholar 

  106. Gh-S Paraoanu, Persistent currents in a circular array of Bose-Einstein condensates. Phys. Rev. A 67, 023607 (2003)

    ADS  Google Scholar 

  107. F. Mei, V.M. Stojanović, I. Siddiqi, L. Tian, Analog superconducting quantum simulator for Holstein polarons. Phys. Rev. B 88, 224502 (2013)

    ADS  Google Scholar 

  108. T. Holstein, Studies of polaron motion: part II. The “small” polaron. Ann. Phys. (NY) 8, 343 (1959)

    ADS  Google Scholar 

  109. A.J. Heeger, S.A. Kivelson, J.R. Schrieffer, W.-P. Su, Solitons in conducting polymers. Rev. Mod. Phys. 60, 781 (1988)

    ADS  Google Scholar 

  110. K. Hannewald, V.M. Stojanović, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, J. Hafner, Theory of polaron bandwidth narrowing in organic molecular crystals. Phys. Rev. B 69, 144302 (2004)

    Google Scholar 

  111. V.M. Stojanovic, M. Vanević, Quantum-entanglement aspects of polaron systems. Phys. Rev. B 78, 214301 (2008)

    ADS  Google Scholar 

  112. D.J.J. Marchand, G. De Filippis, V. Cataudella, M. Berciu, N. Nagaosa, N.V. Prokof’ev, A.S. Mishchenko, P.C.E. Stamp, Sharp transition for single polarons in the one-dimensional Su-Schrieffer-Heeger model. Phys. Rev. Lett. 105, 266605 (2010)

    ADS  Google Scholar 

  113. F. Herrera, K.W. Madison, R.V. Krems, M. Berciu, Investigating polaron transitions with polar molecules. Phys. Rev. Lett. 110, 223002 (2013)

    ADS  Google Scholar 

  114. V. M. Stojanović, M. Vanević, E. Demler, L. Tian, Transmon-based simulator of nonlocal electron-phonon coupling: a platform for observing sharp small-polaron transitions. arXiv:1401.4783

  115. A.M. Zagoskin, S. Savel’ev, F. Nori, Modeling an adiabatic quantum computer. Phys. Rev. Lett. 98, 120503 (2007)

    ADS  Google Scholar 

  116. M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473, 194 (2011)

    ADS  Google Scholar 

  117. A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2, 571 (2012)

    ADS  Google Scholar 

  118. S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Quantum annealing with more than one hundred qubits. arXiv:1304.4595

  119. T.F.Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, and M. Troyer, Defining and detecting quantum speedup. arXiv:1401.2910

  120. K.L. Pudenz, T. Albash, D.A. Lidar, Error corrected quantum annealing with hundreds of qubits. arXiv:1307.8190

  121. M. Tavis, F.W. Cummings, Exact solution for an n-molecule-radiation-field hamiltonian. Phys. Rev. 170, 379 (1968)

    ADS  Google Scholar 

  122. J.M. Fink, Dressed collective qubit states and the Tavis–Cummings model in circuit QED. Phys. Rev. Lett. 103, 083601 (2009)

    ADS  Google Scholar 

  123. G.S. Paraoanu, Realism and single-quanta nonlocality. Found. Phys. 41, 734 (2011)

    MATH  MathSciNet  ADS  Google Scholar 

  124. L. Heaney, A. Cabello, M.F. Santos, V. Vedral, Extreme nonlocality with one photon. New J. Phys. 13, 053054 (2011)

    ADS  Google Scholar 

  125. P. Macha, G. Oelsner, J.-M. Reiner, M. Marthaler, S. André, G. Schön, U. Huebner, H.-G. Meyer, E. Il’ichev, A.V. Ustinov, Implementation of a quantum metamaterial. arXiv:1309.5268

Download references

Acknowledgments

Financial support from the Academy of Finland (project 263457, and the Center of Excellence “Low Temperature Quantum Phenomena and Devices” project 250280) and FQXi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Paraoanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paraoanu, G.S. Recent Progress in Quantum Simulation Using Superconducting Circuits. J Low Temp Phys 175, 633–654 (2014). https://doi.org/10.1007/s10909-014-1175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1175-8

Keywords

Navigation