Skip to main content

Closing the Wound: Can Sutures Be Avoided?

  • Chapter
  • First Online:
Modern Keratoplasty

Abstract

Suturing has always been a crucial step during eye surgery and in its post-operative recovery. Indeed, sutures are time-consuming, expensive and often associated with complications, such as irritation of the cornea and/or conjunctiva, astigmatism and increased healing time. Moreover, thin tissues and tissues located in sites difficult to access, such as endothelium, Descemet membrane or even capsular bag tissue, are almost impossible to suture with a standard procedure. Over the last 20 years, our research group designed and optimised an original approach to a suture-less surgery: a near-infrared diode laser (810 nm wavelength) and an exogenous chromophore are used to provide a selective and controlled photothermal effect, acting as a fast and reliable sealant of ocular tissues. The near-infrared light penetrates deep into the tissue: it is thus possible to seal tissue layers located in depth, avoiding their handling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krootila K, Wetterstrand O, Holopainen J. Post-keratoplasty astigmatism. In: Hjortdal J, editor. Corneal transplantation. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-24052-7_12.

    Chapter  Google Scholar 

  2. Williams GP, Mehta JS. Technology: femtosecond laser in keratoplasty. In: Hjortdal J, editor. Corneal transplantation. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-24052-7_15.

    Chapter  Google Scholar 

  3. Christo CG, van Rooij J, Geerards AJ, et al. Suture-related complications following keratoplasty: a 5-year retrospective study. Cornea. 2001;20(8):816–9. https://doi.org/10.1097/00003226-200111000-00008.

    Article  CAS  PubMed  Google Scholar 

  4. Bar-Sela SM, Spierer O, Spierer A. Suture-related complications after congenital cataract surgery: Vicryl versus Mersilene sutures. J Cataract Refract Surg. 2007;33(2):301–4. https://doi.org/10.1016/j.jcrs.2006.10.039.

    Article  PubMed  Google Scholar 

  5. Jeganathan SV, Ghosh S, Jhanji V, et al. Resuturing following penetrating keratoplasty: a retrospective analysis. Br J Ophthalmol. 2008;92(7):893–5. https://doi.org/10.1136/bjo.2007.133421.

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Huang Y, Yang W, Sun X, Yingni X, Peng Y, Song W, Yuan J, Li R. Sutureless transplantation using a semi-interpenetrating polymer network bioadhesive for ocular surface reconstruction. Acta Biomater. 2022;153:273–86. https://doi.org/10.1016/j.actbio.2022.09.049.

    Article  CAS  PubMed  Google Scholar 

  7. Pini R, Rossi F, Matteini P, et al. Laser tissue welding in minimally invasive surgery and microsurgery. In: Pavesi L, Fauchet PM, editors. Biophotonics. Berlin: Springer; 2008. p. 275–99.

    Chapter  Google Scholar 

  8. Pini R, Rossi F, Menabuoni L, et al. Diode laser welding for cornea suturing: an experimental study of the repair process. In: Manns F, Soderberg PG, Ho A, editors. Ophthalmic technologies XIV; 2004. p. 245–52.

    Google Scholar 

  9. Rossi F, Pini R, Menabuoni L, et al. Experimental study on the healing process following laser welding of the cornea. J Biomed Opt. 2005;10(2). https://doi.org/10.1117/1.1900703.

  10. Pini R, Rossi F, Menabuoni L, et al. Preliminary study on the closure of the lens capsule by laser welding - art. no. 61381C. In: Manns F, Soderberg PG, Ho A, editors. Ophthalmic technologies XVI; 2006. p. C1381.

    Google Scholar 

  11. Pini R, Rossi F, Menabuoni L. Laser welding of biological tissue: experimental studies in ophthalmology - art. no. 619103. In: Grzymala R, Haeberle O, editors. Biophotonics and new therapy frontiers; 2006. p. 19103.

    Google Scholar 

  12. Menabuoni L, Pini R, Rossi F, et al. Laser-assisted corneal welding in cataract surgery: retrospective study. J Cataract Refract Surg. 2007;33(9):1608–12. https://doi.org/10.1016/j.jcrs.2007.04.013.

    Article  PubMed  Google Scholar 

  13. Rossi F, Matteini P, Ratto F, et al. Laser tissue welding in ophthalmic surgery. J Biophotonics. 2008;1(4):331–42. https://doi.org/10.1002/jbio.200810028.

    Article  PubMed  Google Scholar 

  14. Rossi F, Matteini P, Pini R, et al. Long term observation of low power diode laser welding after penetrating keratoplasty in human patients. In: Manns F, Soderberg PG, Arthur HO, editors. Ophthalmic technologies XX; 2010.

    Google Scholar 

  15. Buzzonetti L, Capozzi P, Petrocelli G, et al. Laser welding in penetrating keratoplasty and cataract surgery in pediatric patients: early results. J Cataract Refract Surg. 2013;39(12):1829–34. https://doi.org/10.1016/j.jcrs.2013.05.046.

    Article  PubMed  Google Scholar 

  16. Rossi F, Menabuoni L, Malandrini A, et al. “All-Laser” endothelial corneal transplant in human patients. In: Manns F, Soderberg PG, Ho A, editors. Ophthalmic technologies XXII; 2012.

    Google Scholar 

  17. Menabuoni L, Canovetti A, Rossi F, et al. The ‘anvil’ profile in femtosecond laser-assisted penetrating keratoplasty. Acta Ophthalmol. 2013;91(6):e494–5. https://doi.org/10.1111/aos.12144.

    Article  CAS  PubMed  Google Scholar 

  18. Canovetti A, Malandrini A, Lenzetti I, et al. Laser-assisted penetrating keratoplasty: 1-year results in patients using a laser-welded anvil-profiled graft. Am J Ophthalmol. 2014;158(4):664–70. https://doi.org/10.1016/j.ajo.2014.07.010.

    Article  PubMed  Google Scholar 

  19. Rodriguez Galarza RM, McMullen RJ Jr. Descemet’s membrane detachments, ruptures, and separations in ten adult horses: clinical signs, diagnostics, treatment options, and preliminary results. Vet Ophthalmol. 2020;23(4):611–23. https://doi.org/10.1111/vop.12793.

    Article  PubMed  Google Scholar 

  20. Strassmann E, Livny E, Loya N, et al. CO2 laser welding of corneal cuts with albumin solder using radiometric temperature control. Ophthalmic Res. 2013;50(3):174–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rasier R, Ozeren M, Artunay O, et al. Corneal tissue welding with infrared laser irradiation after clear corneal incision. Cornea. 2010;29(9):985–90. https://doi.org/10.1097/ICO.0b013e3181cc7a3e.

    Article  PubMed  Google Scholar 

  22. Savage HE, Halder RK, Kartazayeu U, et al. NIR laser tissue welding of in vitro porcine cornea and sclera tissue. Lasers Surg Med. 2004;35(4):293–303. https://doi.org/10.1002/lsm.20094.

    Article  PubMed  Google Scholar 

  23. Barak A, Eyal O, Rosner M, et al. Temperature-controlled CO2 laser tissue welding of ocular tissues. Surv Ophthalmol. 1997;42 Suppl 1:S77–81. https://doi.org/10.1016/s0039-6257(97)80029-x.

    Article  CAS  PubMed  Google Scholar 

  24. Menabuoni L, Malandrini A, Canovetti A, Lenzetti I, Pini R, Rossi F. The use of femtosecond laser and corneal welding in the surgery of keratoconus. In: Alió J, editor. Keratoconus. Essentials in ophthalmology. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-43881-8_24.

    Chapter  Google Scholar 

  25. Rossi F, Canovetti A, Malandrini A, et al. An “all-laser” endothelial transplant. J Vis Exp. 2015;(101):e52939. https://doi.org/10.3791/52939.

  26. Nuzzo V, Aptel F, Savoldelli M, et al. Histologic and ultrastructural characterization of corneal femtosecond laser trephination. Cornea. 2009;28(8):908–13. https://doi.org/10.1097/ICO.0b013e318197ebeb.

    Article  PubMed  Google Scholar 

  27. Chamberlain WD, Rush SW, Mathers WD, et al. Comparison of femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty. Ophthalmology. 2011;118(3):486–91. https://doi.org/10.1016/j.ophtha.2010.08.002.

    Article  PubMed  Google Scholar 

  28. Busin M, Robert CA. Microkeratome-assisted mushroom keratoplasty with minimal endothelial replacement. Am J Ophthalmol. 2005;140(1):138–40.

    Article  PubMed  Google Scholar 

  29. Farid M, Kim M, Steinert RF. Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report. Ophthalmology. 2007;114(12):2208–12. https://doi.org/10.1016/j.ophtha.2007.08.048.

    Article  PubMed  Google Scholar 

  30. Canovetti A, Rossi F, Rossi M, et al. Anvil-profiled penetrating keratoplasty: load resistance evaluation. Biomech Model Mechanobiol. 2019;18(2):319–25. https://doi.org/10.1007/s10237-018-1083-y.

    Article  PubMed  Google Scholar 

  31. Lee HP, Zhuang H. Biomechanical study on the edge shapes for penetrating keratoplasty. Comput Methods Biomech Biomed Engin. 2012;15(10):1071–9. https://doi.org/10.1080/10255842.2011.571677.

    Article  PubMed  Google Scholar 

  32. Matteini P, Rossi F, Menabuoni L, et al. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue. Lasers Surg Med. 2007;39(7):597–604. https://doi.org/10.1002/lsm.20532.

    Article  PubMed  Google Scholar 

  33. Matteini P, Ratto F, Rossi F, et al. Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging. Opt Exp. 2009;17(6):4868–78.

    Article  CAS  Google Scholar 

  34. Matteini P, Ratto F, Rossi F, et al. Investigation on fibrous collagen modifications during corneal laser welding by second harmonic generation microscopy. In: Manns F, Soderberg PG, Ho A, editors. Ophthalmic technologies XIX; 2009.

    Google Scholar 

  35. Matteini P, Rossi F, Ratto F, et al. Quantitative analysis of thermally-induced alterations of corneal stroma by second-harmonic generation imaging. In: Manns F, Soderberg PG, Arthur HO, editors. Ophthalmic technologies XX; 2010.

    Google Scholar 

  36. Matteini P, Cicchi R, Ratto F, et al. Thermal transitions of fibrillar collagen unveiled by second-harmonic generation microscopy of corneal stroma. Biophys J. 2012;103(6):1179–87. https://doi.org/10.1016/j.bpj.2012.07.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rossi F, Pini R, Menabuoni L. Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea. J Biomed Opt. 2007;12(1):014031. https://doi.org/10.1117/1.2437156.

    Article  PubMed  Google Scholar 

  38. Rossi F, Matteini P, Pini R, et al. Temperature control during diode laser welding in a human cornea - art. no. 663215. In: Vogel A, editor. Therapeutic laser applications and laser-tissue interaction III. Spie-Int Soc Optical Engineering: Bellingham; 2007. p. 63215.

    Google Scholar 

  39. Menabuoni L, Pini R, Fantozzi M, et al. “All–laser” sutureless lamellar keratoplasty (ALSL–LK): a first case report. Invest Ophthalmol Vis Sci. 2006;47(13):2356.

    Google Scholar 

  40. Niemz MH. Laser-tissue interactions. Berlin: Springer; 2007.

    Book  Google Scholar 

  41. Rossi F, Pini R. Modeling the temperature rise during diode laser welding of the cornea. In: Ophthalmic technologies XV, vol. 5688; 2005. p. 185–193. https://doi.org/10.1117/12.610814.

  42. Rossi F, Pini R, Menabuoni L, et al. Robotic consolle for ocular surgery: a preliminary study. In: Ophthalmic technologies XXIV; 2014.

    Google Scholar 

  43. Menabuoni L, Malandrini A, Canovetti A, et al. Laser assisted robotic surgery in keratoplasty. Investig Ophthalmol Vis Sci. 2017;58(8):3.

    Google Scholar 

  44. Rossi F, Micheletti F, Magni G, et al. A robotic platform for laser welding of corneal tissue. In: Novel biophotonics techniques and applications IV; 2017.

    Google Scholar 

  45. Rossi F, Micheletti F, Magni G, et al. Laser assisted robotic surgery in cornea transplantation. In: Design and quality for biomedical technologies X; 2017.

    Google Scholar 

  46. Russo S, Petroni G, Quaglia C, et al. ESPRESSO: a novel device for laser-assisted surgery of the anterior eye segment. Minim Invasive Ther Allied Technol. 2016;25(2):70–8. https://doi.org/10.3109/13645706.2015.1092450. PMID: 26429150.

    Article  PubMed  Google Scholar 

  47. Bal-Ozturk A, Cecen B, Avci-Adali M, et al. Tissue adhesives: from research to clinical translation. Nano Today. 2021;36:101049. https://doi.org/10.1016/j.nantod.2020.101049.

    Article  CAS  PubMed  Google Scholar 

  48. Smeets R, Tauer N, Vollkommer T, et al. Tissue adhesives in reconstructive and aesthetic surgery-application of silk fibroin-based biomaterials. Int J Mol Sci. 2022;23(14):7687. https://doi.org/10.3390/ijms23147687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pini R, Menabuoni L, Lenzetti I, et al.

    Google Scholar 

  50. Pini R, Rossi F, Menabuoni L, et al. A new technique for the closure of the lens capsule by laser welding. Ophthalmic Surg Lasers Imaging. 2008;39(3):260–1. https://doi.org/10.3928/15428877-20080501-12.

    Article  PubMed  Google Scholar 

  51. Rossi F, Matteini P, Menabuoni L, et al. Sutureless closure of scleral wounds in animal models by the use of laser welded biocompatible patches. In: Manns F, Soderberg PG, Ho A, editors. Ophthalmic technologies XXI; 2011.

    Google Scholar 

  52. Rossi F, Matteini P, Esposito G, et al. In vivo experimental study on laser welded ICG-loaded chitosan patches for vessel repair. In: Kollias N, Choi B, Zeng H, editors. Photonic therapeutics and diagnostics VII; 2011.

    Google Scholar 

  53. Rossi F, Matteini P, Esposito G, et al. In vivo laser assisted end-to-end anastomosis with ICG-infused chitosan patches. In: Sroka R, Lilge LD, editors. Medical laser applications and laser-tissue interactions V; 2011.

    Google Scholar 

  54. Rossi F, Matteini P, Ratto F, et al. Laser bonding with ICG-infused chitosan patches: preliminary experiences in suine dura mater and vocal folds. In: Biophotonics: photonic solutions for better health care IV, vol. 9129; 2014. https://doi.org/10.1117/12.2051487.

  55. Milanesi A, Magni G, Centi S, et al. Optically activated and interrogated plasmonic hydrogels for applications in wound healing. J Biophotonics. 2020;13(9):e202000135. https://doi.org/10.1002/jbio.202000135.

    Article  CAS  PubMed  Google Scholar 

  56. Ratto F, Magni G, Aluigi A, et al. Cyanine-doped nanofiber mats for laser tissue bonding. Nanomaterials (Basel). 2022;12(9):1613. https://doi.org/10.3390/nano12091613.

    Article  CAS  PubMed  Google Scholar 

  57. Matteini P, Ratto F, Rossi F, et al. Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives. Adv Mater. 2010;22(38):4313–6. https://doi.org/10.1002/adma.201002228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Rossi .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Suture-less lamellar keratoplasty procedure: (1) femtolaser preparation of patient cornea; (2) donor lamella apposition; (3) ICG staining of donor/recipient interface; (4) laser welding (MP4 29236 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menabuoni, L. et al. (2023). Closing the Wound: Can Sutures Be Avoided?. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics