Skip to main content

Cultured Cells for Corneal Endothelial Therapy

  • Chapter
  • First Online:
Modern Keratoplasty

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 142 Accesses

Abstract

The human cornea is a five-layered tissue that provides two-thirds of the total refractive power of the eye, and it is the first barrier protecting the intraocular content. The corneal endothelium, the inner layer, is in charge of maintaining the cornea in a relatively dehydrated state and therefore transparent. The endothelial cell layer failure leads to corneal swelling, loss of transparency and blindness.

Currently, the only effective and probed way to restore endothelial function universally is to perform an allogenic graft. Since Melles revolutionized the field by describing a method to dissect only Descemet Membrane (DM) from the recipient eye, leaving the posterior lamella intact, and after Price and Gorovoy pioneered Descemet stripping endothelial keratoplasty (DSEK), a variety of endothelial keratoplasty techniques have taken over. However, there is a scarcity of donors to adequate to high and increasing demand.

Cell culture techniques make it possible to expand ex vivo the corneal endothelial cells (CEC) to subsequently inject a cell solution into the anterior chamber, or else to manufacture constructs made up of acellular corneal stroma, acellular Descemet membrane or carriers manufactured by tissue bioengineering, and colonized by CEC expanded ex vivo, which could then be grafted onto the recipient. Nowadays, we are in an outstanding position to develop corneal endothelial cell sheets for endothelial keratoplasty: reproducible and well-defined culturing methods and conditions have been achieved in the last decades. Regardless of advances in promoting human CEC proliferation, the achieved capacity for expanding human CECs is still highly limited; new sources of CECs are therefore sought. The use of extraocular cells capable of differentiating into corneal endothelial cells is highly desirable. Recent advances have been achieved in differentiation protocols from embryonic stem cells and adipose-derived mesenchymal stem cells.

New advances in biomimetic materials and manufacturing protocols such as electrospinning, nanolithography, vitrification, and advances in novel 3D printing techniques such as LIFT, laser-assisted bioprinting, and others will aid in the search for a donor-independent biocompatible carrier.

Further development of these and previous approaches, by defining the growth factors, the signaling pathways implicated in directed differentiation, the use of more practical cells to derive hCECs, and the in vivo demonstration of functionality are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moshirfar M, Thomson AC, Ronquillo Y. Corneal endothelial transplantation. Treasure Islad, FL: StatPearls Publishing; 2022.

    Google Scholar 

  2. Bourne W, Nelson L, Hodge D. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci. 1997;38(3):779–82.

    CAS  Google Scholar 

  3. He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, et al. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells. 2012;30(11):2523–34.

    Article  CAS  Google Scholar 

  4. Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-β2. Investig Ophthalmol Vis Sci. 2002;43(7):2152–9.

    Google Scholar 

  5. Sherrard ES. The corneal endothelium in vivo: its response to mild trauma. Exp Eye Res. 1976;22(4):347–57.

    Article  CAS  Google Scholar 

  6. Joyce NC, Meklir B, Joyce SJ, Zieske JD. Cell cycle protein expression and proliferative status in human corneal cells. Investig Ophthalmol Vis Sci. 1996;37(4):645–55.

    CAS  Google Scholar 

  7. Dirisamer M, Yeh RY, Van Dijk K, Ham L, Dapena I, Melles GRJ. Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer. Am J Ophthalmol. 2012;154(2):290–296.e1.

    Article  Google Scholar 

  8. Garcerant D, Hirnschall N, Toalster N, Zhu M, Wen L, Moloney G. Descemet’s stripping without endothelial keratoplasty. Curr Opin Ophthalmol. 2019;30(4):275–85.

    Article  Google Scholar 

  9. Melles GRJ, Wijdh RHJ, Nieuwendaal CP. A technique to excise the descemet membrane from a recipient cornea (Descemetorhexis). Cornea. 2004;23(3):286–8.

    Article  Google Scholar 

  10. Price FW, Price MO. Descemet’s stripping with endothelial keratoplasty in 50 eyes: a refractive neutral corneal transplant. J Refract Surg. 2005;21(4):339–45.

    Article  Google Scholar 

  11. Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–9.

    Article  Google Scholar 

  12. Chen ES, Terry MA, Shamie N, Hoar KL, Friend DJ. Precut tissue in descemet’s stripping automated endothelial keratoplasty. Donor characteristics and early postoperative complications. Ophthalmology. 2008;115(3):497–502.

    Article  Google Scholar 

  13. Tourabaly M, Chetrit Y, Provost J, Georgeon C, Kallel S, Temstet C, et al. Influence of graft thickness and regularity on vision recovery after endothelial keratoplasty. Br J Ophthalmol. 2020;104(9):1317–23.

    Google Scholar 

  14. Perone J-M, Goetz C, Zevering Y, Derumigny A, Bloch F, Vermion J-C, et al. Graft thickness at 6 months postoperatively predicts long-term visual acuity outcomes of descemet stripping automated endothelial keratoplasty for fuchs dystrophy and moderate phakic bullous keratopathy. Cornea. 2021;41(11):1362.

    Article  Google Scholar 

  15. Busin M, Madi S, Santorum P, Scorcia V, Beltz J. Ultrathin descemet’s stripping automated endothelial keratoplasty with the microkeratome double-pass technique: two-year outcomes. Ophthalmology. 2013;120(6):1186–94.

    Article  Google Scholar 

  16. Melles GRJ, Ong TS, Ververs B, van der Wees J. Preliminary clinical results of descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2008;145(2):222.

    Article  Google Scholar 

  17. Melles GRJ, Ong TS, Ververs B, van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25(8):987–90.

    Google Scholar 

  18. Lam FC, Baydoun L, Dirisamer M, Lie J, Dapena I, Melles GRJ. Hemi-descemet membrane endothelial keratoplasty transplantation: a potential method for increasing the pool of endothelial graft tissue. JAMA Ophthalmol. 2014;132(12):1469–73.

    Article  Google Scholar 

  19. Birbal RS, Ni Dhubhghaill S, Baydoun L, Ham L, Bourgonje VJA, Dapena I, et al. Quarter-descemet membrane endothelial keratoplasty: one- to two-year clinical outcomes. Cornea. 2020;39(3):277–82.

    Article  Google Scholar 

  20. Moloney G, Garcerant Congote D, Hirnschall N, Arsiwalla T, Luiza Mylla Boso A, Toalster N, et al. Descemet stripping only supplemented with topical Ripasudil for Fuchs endothelial dystrophy 12-month outcomes of the Sydney eye hospital study. Cornea. 2021;40(3):320–6.

    Article  Google Scholar 

  21. Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95(1):16–23.

    Article  CAS  Google Scholar 

  22. McGlumphy EJ, Margo JA, Haidara M, Brown CH, Hoover CK, Munir WM. Predictive value of corneal donor demographics on endothelial cell density. Cornea. 2018;37(9):1159–62.

    Article  Google Scholar 

  23. Peh GSL, Toh KP, Wu FY, Tan DT, Mehta JS. Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLoS One. 2011;6(12):e28310.

    Article  CAS  Google Scholar 

  24. Kitazawa K, Inatomi T, Tanioka H, Kawasaki S, Nakagawa H, Hieda O, et al. The existence of dead cells in donor corneal endothelium preserved with storage media. Br J Ophthalmol. 2017;101(12):1725–30.

    Article  Google Scholar 

  25. Valtink M, Donath P, Engelmann K, Knels L. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro. Graefes Arch Clin Exp Ophthalmol. 2016;254(2):285–95.

    Article  CAS  Google Scholar 

  26. Parekh M, Peh G, Mehta JS, Ahmad S, Ponzin D, Ferrari S. Effects of corneal preservation conditions on human corneal endothelial cell culture. Exp Eye Res. 2019;179:93–101.

    Article  CAS  Google Scholar 

  27. Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Investig Ophthalmol Vis Sci. 2004;45(3):800–6.

    Article  Google Scholar 

  28. Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp Eye Res. 2004;78(3):573–8.

    Article  CAS  Google Scholar 

  29. Engler C, Kelliher C, Speck CL, Jun AS. Assessment of attachment factors for primary cultured human corneal endothelial cells. Cornea. 2009;28(9):1050–4.

    Article  Google Scholar 

  30. He Z, Forest F, Bernard A, Gauthier AS, Montard R, Peoc’h M, et al. Cutting and decellularization of multiple corneal stromal lamellae for the bioengineering of endothelial grafts. Investig Ophthalmol Vis Sci. 2016;57(15):6639–51.

    Article  Google Scholar 

  31. Zhu YT, Tighe S, Chen SL, John T, Kao WY, Tseng SCG. Engineering of human corneal endothelial grafts. Curr Ophthalmol Rep. 2015;3(3):207–17.

    Article  Google Scholar 

  32. Møller-Pedersen T, Hartmann U, Ehlers N, Engelmann K. Evaluation of potential organ culture media for eye banking using a human corneal endothelial cell growth assay. Graefes Arch Clin Exp Ophthalmol. 2001;239(10):778–82.

    Article  Google Scholar 

  33. Jäckel T, Knels L, Valtink M, Funk RHW, Engelmann K. Serum-free corneal organ culture medium (SFM) but not conventional minimal essential organ culture medium (MEM) protects human corneal endothelial cells from apoptotic and necrotic cell death. Br J Ophthalmol. 2011;95(1):123–30.

    Article  Google Scholar 

  34. Bednarz J, Doubilei V, Wollnik PCM, Engelmann K. Effect of three different media on serum free culture of donor corneas and isolated human corneal endothelial cells. Br J Ophthalmol. 2001;85(12):1416–20.

    Article  CAS  Google Scholar 

  35. Parekh M, Romano V, Ruzza A, Kaye SB, Ponzin D, Ahmad S, et al. Culturing discarded peripheral human corneal endothelial cells from the tissues deemed for preloaded DMEK transplants. Cornea. 2019;38(9):1175–81.

    Article  Google Scholar 

  36. Okumura N, Sakamoto Y, Fujii K, Kitano J, Nakano S, Tsujimoto Y, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6(January):1–11.

    CAS  Google Scholar 

  37. Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003.

    Article  CAS  Google Scholar 

  38. Okumura N, Matsumoto D, Fukui Y, Teramoto M, Imai H, Kurosawa T, et al. Feasibility of cell-based therapy combined with descemetorhexis for treating Fuchs endothelial corneal dystrophy in rabbit model. PLoS One. 2018;13(1):1–14.

    Article  Google Scholar 

  39. Parekh M, Romano V, Hassanin K, Testa V, Wongvisavavit R, Ferrari S, et al. Biomaterials for corneal endothelial cell culture and tissue engineering. J Tissue Eng. 2021;12:2041731421990536.

    Article  Google Scholar 

  40. Koizumi N, Sakamoto Y, Okumura N, Okahara N, Tsuchiya H, Torii R, et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Investig Ophthalmol Vis Sci. 2007;48(10):4519–26.

    Article  Google Scholar 

  41. Navaratnam J, Utheim T, Rajasekhar V, Shahdadfar A. Substrates for expansion of corneal endothelial cells towards bioengineering of human corneal endothelium. J Funct Biomater. 2015;6(3):917–45.

    Article  CAS  Google Scholar 

  42. Levis H, Kureshi A, Massie I, Morgan L, Vernon A, Daniels J. Tissue engineering the cornea: the evolution of RAFT. J Funct Biomater. 2015;6(1):50–65.

    Article  Google Scholar 

  43. Watanabe R, Hayashi R, Kimura Y, Tanaka Y, Kageyama T, Hara S, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17(17–18):2213–9.

    Article  CAS  Google Scholar 

  44. Lai JY, Cheng HY, Hui-Kang MD. Investigation of overrun-processed porous hyaluronic acid carriers in corneal endothelial tissue engineering. PLoS One. 2015;10(8):1–20.

    Article  CAS  Google Scholar 

  45. Liang Y, Liu W, Han B, Yang C, Ma Q, Zhao W, et al. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J Mater Sci Mater Med. 2011;22(1):175–83.

    Article  CAS  Google Scholar 

  46. Madden PW, Lai JNX, George KA, Giovenco T, Harkin DG, Chirila TV. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials. 2011;32(17):4076–84.

    Article  CAS  Google Scholar 

  47. Ramachandran C, Gupta P, Hazra S, Mandal BB. In vitro culture of human corneal endothelium on non-mulberry silk fibroin films for tissue regeneration. Transl Vis Sci Technol. 2020;9(4):1–15.

    Article  Google Scholar 

  48. Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res. 2013;35:1–17.

    Article  CAS  Google Scholar 

  49. Bayyoud T, Thaler S, Hofmann J, Maurus C, Spitzer MS, Bartz-Schmidt KU, et al. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res. 2012;37(3):179–86.

    Article  CAS  Google Scholar 

  50. Chakraborty J, Roy S, Murab S, Ravani R, Kaur K, Devi S, et al. Modulation of macrophage phenotype, maturation, and graft integration through chondroitin sulfate cross-linking to Decellularized cornea. ACS Biomater Sci Eng. 2019;5(1):165–79.

    Article  CAS  Google Scholar 

  51. Arnalich-Montiel F, Moratilla A, Fuentes-Julián S, Aparicio V, Martin MC, Peh G, et al. Treatment of corneal endothelial damage in a rabbit model with a bioengineered graft using human decellularized corneal lamina and cultured human corneal endothelium. PLoS One. 2019;14(11):1–16.

    Article  Google Scholar 

  52. Yoeruek E, Saygili O, Spitzer MS, Tatar O, Bartz-Schmidt KU. Human anterior lens capsule as carrier matrix for cultivated human corneal endothelial cells. Cornea. 2009;28(4):416–20.

    Article  Google Scholar 

  53. Parekh M, Van den Bogerd B, Zakaria N, Ponzin D, Ferrari S. Fish scale-derived scaffolds for culturing human corneal endothelial cells. Stem Cells Int. 2018;2018:8146834.

    Article  Google Scholar 

  54. Kruse M, Walter P, Bauer B, Rütten S, Schaefer K, Plange N, et al. Electro-spun membranes as scaffolds for human corneal endothelial cells. Curr Eye Res. 2018;43(1):1–11.

    Article  CAS  Google Scholar 

  55. Ozcelik B, Brown KD, Blencowe A, Ladewig K, Stevens GW, Scheerlinck JPY, et al. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater. 2014;3(9):1496–507.

    Article  CAS  Google Scholar 

  56. Kennedy S, Lace R, Carserides C, Gallagher AG, Wellings DA, Williams RL, et al. Poly-ε-lysine based hydrogels as synthetic substrates for the expansion of corneal endothelial cells for transplantation. J Mater Sci Mater Med. 2019;30(9):1–13.

    Article  CAS  Google Scholar 

  57. Kim EY, Tripathy N, Cho SA, Lee D, Khang G. Collagen type I–PLGA film as an efficient substratum for corneal endothelial cells regeneration. J Tissue Eng Regen Med. 2017;11(9):2471–8.

    Article  CAS  Google Scholar 

  58. Palchesko RN, Lathrop KL, Funderburgh JL, Feinberg AW. In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep. 2015;5:32–4.

    Article  Google Scholar 

  59. Rizwan M, Peh GS, Adnan K, Naso SL, Mendez AR, Mehta JS, et al. In vitro topographical model of Fuchs dystrophy for evaluation of corneal endothelial cell monolayer formation. Adv Healthc Mater. 2016;5(22):2896–910.

    Article  CAS  Google Scholar 

  60. Wang YH, Young TH, Wang TJ. Investigating the effect of chitosan/ polycaprolactone blends in differentiation of corneal endothelial cells and extracellular matrix compositions. Exp Eye Res. 2019;185:107679.

    Article  CAS  Google Scholar 

  61. Hsiue GH, Lai JY, Chen KH, Hsu WM. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation. 2006;81(3):473–6.

    Article  CAS  Google Scholar 

  62. Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, Watanabe K, et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J. 2006;20(2):392–4.

    Article  CAS  Google Scholar 

  63. Ide T, Nishida K, Yamato M, Sumide T, Utsumi M, Nozaki T, et al. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials. 2006;27(4):607–14.

    Article  CAS  Google Scholar 

  64. Lai JY, Chen KH, Hsiue GH. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation. 2007;84(10):1222–32.

    Article  Google Scholar 

  65. Okumura N, Koizumi N. Regeneration of the corneal endothelium. Curr Eye Res. 2020;45(3):303–12.

    Article  Google Scholar 

  66. Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, et al. Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Investig Ophthalmol Vis Sci. 2012;53(3):1325–31.

    Article  Google Scholar 

  67. Tuft SJ, Coster DJ. The corneal endothelium. Eye. 1990;4(3):389–424.

    Article  Google Scholar 

  68. Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye. 2013;27(5):579–88.

    Article  CAS  Google Scholar 

  69. McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R. Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One. 2015;10(12):1–24.

    Article  Google Scholar 

  70. Ali M, Kabir F, Raskar S, Renuse S, Na CH, Delannoy M, et al. Generation and proteome profiling of PBMC-originated, iPSC-derived lentoid bodies. Stem Cell Res. 2020;46:101813.

    Article  CAS  Google Scholar 

  71. Wagoner MD, Bohrer LR, Aldrich BT, Greiner MA, Mullins RF, Worthington KS, et al. Feeder-free differentiation of cells exhibiting characteristics of corneal endothelium from human induced pluripotent stem cells. Biol Open. 2018;7(5):1–10.

    Google Scholar 

  72. Zhao JJ, Afshari NA. Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Investig Ophthalmol Vis Sci. 2016;57(15):6878–84.

    Article  CAS  Google Scholar 

  73. Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014;23(12):1340–54.

    Article  CAS  Google Scholar 

  74. Chen P, Chen JZ, Shao CY, Li CY, Zhang YD, Lu WJ, et al. Treatment with retinoic acid and lens epithelial cell-conditioned medium in vitro directed the differentiation of pluripotent stem cells towards corneal endothelial cell-like cells. Exp Ther Med. 2015;9(2):351–60.

    Article  Google Scholar 

  75. Bosch BM, Salero E, Núñez-Toldrà R, Sabater AL, Gil FJ, Perez RA. Discovering the potential of dental pulp stem cells for corneal endothelial cell production: a proof of concept. Front Bioeng Biotechnol. 2021;96:17724.

    Google Scholar 

  76. Soh YQ, Mehta JS. Regenerative therapy for fuchs endothelial corneal dystrophy. Cornea. 2018;37(4):523–7.

    Article  Google Scholar 

  77. Peh GSL, Chng Z, Ang HP, Cheng TYD, Adnan K, Seah XY, et al. Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant. 2015;24(2):287–304.

    Article  Google Scholar 

  78. Peh GSL, Ang HP, Lwin CN, Adnan K, George BL, Seah XY, et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy. Sci Rep. 2017;7(1):1–17.

    Article  CAS  Google Scholar 

  79. Numa K, Imai K, Ueno M, Kitazawa K, Tanaka H, Bush JD, et al. Five-year follow-up of first 11 patients undergoing injection of cultured corneal endothelial cells for corneal endothelial failure. Ophthalmology. 2021;128(4):504–14.

    Article  Google Scholar 

  80. Marta CM, Adrian M, Jorge FD, Francisco AM, De Miguel MP. Improvement of an effective protocol for directed differentiation of human adipose tissue-derived adult mesenchymal stem cells to corneal endothelial cells. Int J Mol Sci. 2021;22(21):11982.

    Article  CAS  Google Scholar 

  81. Li Z, Duan H, Jia Y, Zhao C, Li W, Wang X, et al. Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest. 2022;132(1):1–11.

    Article  Google Scholar 

  82. Wongvisavavit R, Parekh M, Ahmad S, Daniels JT. Challenges in corneal endothelial cell culture. Regen Med. 2021;16(9):871–91.

    Article  CAS  Google Scholar 

  83. Brunette I, Roberts CJ, Vidal F, Harissi-Dagher M, Lachaine J, Sheardown H, et al. Alternatives to eye bank native tissue for corneal stromal replacement. Prog Retin Eye Res. 2017;59:97–130.

    Article  Google Scholar 

  84. Matthyssen S, Van den Bogerd B, Dhubhghaill SN, Koppen C, Zakaria N. Corneal regeneration: a review of stromal replacements. Acta Biomater. 2018;69:31–41.

    Article  CAS  Google Scholar 

  85. Lagali N. Corneal stromal regeneration: current status and future therapeutic potential. Curr Eye Res. 2020;45(3):278–90.

    Article  CAS  Google Scholar 

  86. Alió del Barrio JL, Arnalich-Montiel F, De Miguel MP, El Zarif M, Alió JL. Corneal stroma regeneration: preclinical studies. Exp Eye Res. 2021;202:108314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Miguel, M.P., Cadenas Martín, M., Moratilla, A., Arnalich-Montiel, F. (2023). Cultured Cells for Corneal Endothelial Therapy. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics