Skip to main content

Advertisement

Log in

Engineering of Human Corneal Endothelial Grafts

  • Stem Cell Therapy (J. Goldberg, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Human corneal endothelial cells (HCEC) play a pivotal role in maintaining corneal transparency. Unlike in other species, HCEC are notorious for their limited proliferative capacity in vivo after diseases, injury, aging, and surgery. Persistent HCEC dysfunction leads to sight-threatening bullous keratopathy with either an insufficient cell density or retrocorneal membrane due to endothelial-mesenchymal transition (EMT). Presently, the only solution to restore vision in eyes inflicted with bullous keratopathy or retrocorneal membrane relies upon transplantation of a cadaver human donor cornea containing a healthy corneal endothelium. Due to a severe global shortage of donor corneas, in conjunction with an increasing trend toward endothelial keratoplasty, it is opportune to develop a tissue engineering strategy to produce HCEC grafts. Prior attempts of producing these grafts by unlocking the contact inhibition-mediated mitotic block using trypsin–EDTA and culturing of single HCEC in a bFGF-containing medium run the risk of losing the normal phenotype to EMT by activating canonical Wnt signaling and TGF-β signaling. Herein, we summarize our novel approach in engineering HCEC grafts based on selective activation of p120-Kaiso signaling that is coordinated with activation of Rho-ROCK-canonical BMP signaling to reprogram HCEC into neural crest progenitors. Successful commercialization of this engineering technology will not only fulfill the global unmet need but also encourage the scientific community to re-think how cell–cell junctions can be safely perturbed to uncover novel therapeutic potentials in other model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bahn CF, et al. Classification of corneal endothelial disorders based on neural crest origin. Ophthalmology. 1984;91:558–63.

    Article  CAS  PubMed  Google Scholar 

  2. Bonanno JA. Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res. 2003;22:69–94.

    Article  CAS  PubMed  Google Scholar 

  3. Fischbarg J, Maurice DM. An update on corneal hydration control. Exp Eye Res. 2004;78:537–41.

    Article  CAS  PubMed  Google Scholar 

  4. Laing RA, Neubauer L, Oak SS, Kayne HL, Leibowitz HM. Evidence for mitosis in the adult corneal endothelium. Ophthalmology. 1984;91:1129–34.

    Article  CAS  PubMed  Google Scholar 

  5. Joyce NC. Cell cycle status in human corneal endothelium. Exp Eye Res. 2005;81:629–38.

    Article  CAS  PubMed  Google Scholar 

  6. Joyce NC, Meklir B, Joyce SJ, Zieske JD. Cell cycle protein expression and proliferative status in human corneal cells. Invest Ophthalmol Vis Sci. 1996;37:645–55.

    CAS  PubMed  Google Scholar 

  7. Joyce NC, Navon SE, Roy S, Zieske JD. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ. Invest Ophthalmol Vis Sci. 1996;37:1566–75.

    CAS  PubMed  Google Scholar 

  8. Bourne WM, McLaren JW. Clinical responses of the corneal endothelium. Exp Eye Res. 2004;78:561–72.

    Article  CAS  PubMed  Google Scholar 

  9. Lee JG, Kay EP. FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells. Exp Eye Res. 2006;83:1309–16.

    Article  CAS  PubMed  Google Scholar 

  10. World Health Organization. Visual impairment and blindness. Fact sheet no. 282, 2012. http://www.who.int/mediacentre/factsheets/fs282/en/index.html. 2012. Ref Type: Generic.

  11. World Health Organization. Visual impairment and blindness. http://www.who.int/mediacentre/factsheets/fs282/en/index.html, Fact sheet no.282, 2012. 2013. Ref Type: Generic.

  12. Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91:811–9.

    Article  PubMed  Google Scholar 

  13. Jumblatt MM, Maurice DM, McCulley JP. Transplantation of tissue-cultured corneal endothelium. Invest Ophthalmol Vis Sci. 1978;17:1135–41.

    CAS  PubMed  Google Scholar 

  14. Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies. Proc Natl Acad Sci USA. 1979;76:464–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Engelmann K, Bohnke M, Friedl P. Isolation and long-term cultivation of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 1988;29:1656–62.

    CAS  PubMed  Google Scholar 

  16. Pistsov MY, Sadovnikova EY, Danilov SM. Human corneal endothelial cells: isolation, characterization and long-term cultivation. Exp Eye Res. 1988;47:403–14.

    Article  CAS  PubMed  Google Scholar 

  17. Gospodarowicz D, Mescher AL, Birdwell CR. Stimulation of corneal endothelial cell proliferations in vitro by fibroblast and epidermal growth factors. Exp Eye Res. 1977;25:75–89.

    Article  CAS  PubMed  Google Scholar 

  18. Petroll WM, Jester JV, Bean JJ, Cavanagh HD. Myofibroblast transformation of cat corneal endothelium by transforming growth factor-beta1, -beta2, and -beta3. Invest Ophthalmol Vis Sci. 1998;39:2018–32.

    CAS  PubMed  Google Scholar 

  19. Chen KH, Azar D, Joyce NC. Transplantation of adult human corneal endothelium ex vivo: a morphologic study. Cornea. 2001;20:731–7.

    Article  CAS  PubMed  Google Scholar 

  20. • Li W, et al. A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2007;48:614–20. Novel isolation method for human corneal endothelial cells without disruption of cell-cell junctions and cell-matrix interactions by using collagenase instead of traditional trypsin-EDTA was established.

  21. Ishino Y, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45:800–6.

    Article  PubMed  Google Scholar 

  22. Mimura T, et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004;45:2992–7.

    Article  PubMed  Google Scholar 

  23. Yokoo S, et al. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Ophthalmol Vis Sci. 2005;46:1626–31.

    Article  PubMed  Google Scholar 

  24. Hsiue GH, Lai JY, Chen KH, Hsu WM. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation. 2006;81:473–6.

    Article  CAS  PubMed  Google Scholar 

  25. Sumide T, et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J. 2006;20:392–4.

    CAS  PubMed  Google Scholar 

  26. Hatou S, et al. Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling. Stem Cells Dev. 2013;22:828–39.

    Article  CAS  PubMed  Google Scholar 

  27. Senoo T, Obara Y, Joyce NC. EDTA: a promoter of proliferation in human corneal endothelium. Invest Ophthalmol Vis Sci. 2000;41:2930–5.

    CAS  PubMed  Google Scholar 

  28. •• Zhu YT, Chen HC, Chen SY, Tseng SC. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci. 2012;125:3636–48. Alternative expansion method of contact-inhibited human corneal endothelial cells using p120 knockdown was established. This method may avoid disruption of cell-cell junctions, cell-matrix interactions and EMT by traditional expansion method using trypsin-EDTA.

  29. Chen HC, Zhu YT, Chen SY, Tseng SC. Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition. Lab Invest. 2012;92:676–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rieck P, et al. The role of exogenous/endogenous basic fibroblast growth factor (FGF2) and transforming growth factor beta (TGF beta-1) on human corneal endothelial cells proliferation in vitro. Exp Cell Res. 1995;220:36–46.

    Article  CAS  PubMed  Google Scholar 

  31. Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22:359–89.

    Article  CAS  PubMed  Google Scholar 

  32. Lu J, et al. TGF-beta2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation. Exp Cell Res. 2006;312:3631–40.

    Article  CAS  PubMed  Google Scholar 

  33. Okumura N, et al. Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLoS One. 2013;8:e58000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhu YT, et al. Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro. Invest Ophthalmol Vis Sci. 2008;49:3879–86.

    Article  PubMed  Google Scholar 

  35. Joyce NC, Zhu CC. Human corneal endothelial cell proliferation: potential for use in regenerative medicine. Cornea. 2004;23:S8–19.

    Article  PubMed  Google Scholar 

  36. Yamaguchi M, et al. Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Invest Ophthalmol Vis Sci. 2011;52:679–84.

    Article  CAS  PubMed  Google Scholar 

  37. Miyata K, et al. Effect of donor age on morphologic variation of cultured human corneal endothelial cells. Cornea. 2001;20:59–63.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci. 2004;45:1743–51.

    Article  PubMed  Google Scholar 

  39. Lai JY, Chen KH, Hsiue GH. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation. 2007;84:1222–32.

    Article  PubMed  Google Scholar 

  40. Choi JS, et al. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials. 2010;31:6738–45.

    Article  CAS  PubMed  Google Scholar 

  41. Liang Y, et al. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J Mater Sci Mater Med. 2011;22:175–83.

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe R, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17:2213–9.

    Article  CAS  PubMed  Google Scholar 

  43. Koizumi N, et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci. 2007;48:4519–26.

    Article  PubMed  Google Scholar 

  44. Koizumi N, et al. Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea. 2008;27(Suppl 1):S48–55.

    Article  PubMed  Google Scholar 

  45. Mimura T, Yokoo S, Yamagami S. Tissue engineering of corneal endothelium. J Funct Biomater. 2012;3:726–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp Eye Res. 2004;78:573–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jackel T, Knels L, Valtink M, Funk RH, Engelmann K. Serum-free corneal organ culture medium (SFM) but not conventional minimal essential organ culture medium (MEM) protects human corneal endothelial cells from apoptotic and necrotic cell death. Br J Ophthalmol. 2011;95:123–30.

    Article  PubMed  Google Scholar 

  48. Engelmann K, Friedl P. Optimization of culture conditions for human corneal endothelial cells. Vitro Cell Dev Biol. 1989;25:1065–72.

    Article  CAS  Google Scholar 

  49. Yue BY, Sugar J, Gilboy JE, Elvart JL. Growth of human corneal endothelial cells in culture. Invest Ophthalmol Vis Sci. 1989;30:248–53.

    CAS  PubMed  Google Scholar 

  50. Engelmann K, Friedl P. Growth of human corneal endothelial cells in a serum-reduced medium. Cornea. 1995;14:62–70.

    Article  CAS  PubMed  Google Scholar 

  51. Samples JR, Binder PS, Nayak SK. Propagation of human corneal endothelium in vitro effect of growth factors. Exp Eye Res. 1991;52:121–8.

    Article  CAS  PubMed  Google Scholar 

  52. Liu X, et al. LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells. Cell Cycle. 2015;14(8):1197–206.

    Article  PubMed  Google Scholar 

  53. •• Zhu YT, et al. Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells. The Journal of cell biology. 2014;206(6):799–811. The significance of this article is that effective expansion of human corneal endothleial cells can be achieved by reprogramming human corneal endothelial cells into progenitors through p120-Kaiso knockdown in a LIF-containing medium termed MESCM.

  54. Schultz G, et al. Growth factors and corneal endothelial cells: III. Stimulation of adult human corneal endothelial cell mitosis in vitro by defined mitogenic agents. Cornea. 1992;11:20–7.

    Article  CAS  PubMed  Google Scholar 

  55. Blake DA, Yu H, Young DL, Caldwell DR. Matrix stimulates the proliferation of human corneal endothelial cells in culture. Invest Ophthalmol Vis Sci. 1997;38:1119–29.

    CAS  PubMed  Google Scholar 

  56. Shima N, Kimoto M, Yamaguchi M, Yamagami S. Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with l-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci. 2011;52:8711–7.

    Article  CAS  PubMed  Google Scholar 

  57. Okumura N, et al. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors (Y-27632 and Y-39983) during wound healing of corneal endothelium. Invest Ophthalmol Vis Sci. 2013;55:318–29.

    Article  Google Scholar 

  58. Okumura N, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181:268–77.

    Article  CAS  PubMed  Google Scholar 

  59. Okumura N, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2013;54:2493–502.

    Article  CAS  PubMed  Google Scholar 

  60. Chen HC, Zhu YT, Chen SY, Tseng SC. Selective Activation of p120(ctn)-Kaiso Signaling to Unlock Contact Inhibition of ARPE-19 Cells without Epithelial-Mesenchymal Transition. PLoS One. 2012;7:e36864.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Zhu YT, et al. Knockdown of both p120 Catenin and Kaiso Promotes Expansion of Human Corneal Endothelial Monolayers via RhoA-ROCK-Non-canonical BMP-NFkappaB Pathway. Invest Ophthalmol Vis Sci. 2014;55:1509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Whikehart DR, Parikh CH, Vaughn AV, Mishler K, Edelhauser HF. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.

    CAS  PubMed  Google Scholar 

  63. McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.

    CAS  PubMed  Google Scholar 

  64. Yu WY, et al. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol. 2011;2011:412743.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Amano S, Yamagami S, Mimura T, Uchida S, Yokoo S. Corneal stromal and endothelial cell precursors. Cornea. 2006;25:S73–7.

    Article  PubMed  Google Scholar 

  66. Yamagami S, et al. Distribution of precursors in human corneal stromal cells and endothelial cells. Ophthalmology. 2007;114:433–9.

    Article  PubMed  Google Scholar 

  67. Schmedt T, et al. Telomerase immortalization of human corneal endothelial cells yields functional hexagonal monolayers. PLoS One. 2012;7:e51427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Hara S, et al. Identification and potential application of human corneal endothelial progenitor cells. Stem cells and development. 2014;23(18):2190–201.

    Article  CAS  PubMed  Google Scholar 

  69. He Z, et al. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells. 2012;30:2523–34.

    Article  CAS  PubMed  Google Scholar 

  70. Yoshida S, et al. Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells. 2006;24:2714–22.

    Article  CAS  PubMed  Google Scholar 

  71. Patel SP, Bourne WM. Corneal endothelial cell proliferation: a function of cell density. Invest Ophthalmol Vis Sci. 2009;50:2742–6.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to species with nonregenerative endothelium. The cat as an experimental model. Arch Ophthalmol. 1979;97:2163–9.

    Article  CAS  PubMed  Google Scholar 

  73. Lange TM, Wood TO, Mclaughlin BJ. Corneal endothelial cell transplantation using Descemet’s membrane as a carrier. J Cataract Refract Surg. 1993;19:232–5.

    Article  CAS  PubMed  Google Scholar 

  74. McCulley JP, Maurice DM, Schwartz BD. Corneal endothelial transplantation. Ophthalmology. 1980;87:194–201.

    Article  CAS  PubMed  Google Scholar 

  75. Insler MS, Lopez JG. Extended incubation times improve corneal endothelial cell transplantation success. Invest Ophthalmol Vis Sci. 1991;32:1828–36.

    CAS  PubMed  Google Scholar 

  76. Insler MS, Lopez JG. Transplantation of cultured human neonatal corneal endothelium. Curr Eye Res. 1986;5:967–72.

    Article  CAS  PubMed  Google Scholar 

  77. Hadlock T, Singh S, Vacanti JP, Mclaughlin BJ. Ocular cell monolayers cultured on biodegradable substrate. Tissue Eng. 1999;5:187–96.

    Article  CAS  PubMed  Google Scholar 

  78. Mimura T, et al. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp Eye Res. 2004;79:231–7.

    Article  CAS  PubMed  Google Scholar 

  79. Van Horn DL, Sendele DD, Seideman S, Buco PJ. Regenerative capacity of the corneal endothelium in rabbit and cat. Invest Ophthalmol Vis Sci. 1977;16:597–613.

    PubMed  Google Scholar 

  80. Nicholls SM, et al. A model of corneal graft rejection in semi-inbred NIH miniature swine: significant T-cell infiltration of clinically accepted allografts. Invest Ophthalmol Vis Sci. 2012;53:3183–92.

    Article  PubMed  Google Scholar 

  81. Nicholls SM, Mitchard LK, Murrell JC, Dick AD, Bailey M. Perioperative socialization, care and monitoring of National Institutes of Health miniature swine undergoing ocular surgery and sampling of peripheral blood. Lab Anim. 2012;46:59–64.

    Article  CAS  PubMed  Google Scholar 

  82. Forster R, Bode G, Ellegaard L, van der Laan JW. The RETHINK project–minipigs as models for the toxicity testing of new medicines and chemicals: an impact assessment. J Pharmacol Toxicol Methods. 2010;62:158–9.

    Article  CAS  PubMed  Google Scholar 

  83. Banito A, et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 2009;23:2134–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Barroso-Deljesus A, et al. The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells. FASEB J. 2011;25:1497–508.

    Article  CAS  PubMed  Google Scholar 

  85. Card DA, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008;28:6426–38.

    Article  PubMed  Google Scholar 

Download references

Disclosure

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scheffer C. G. Tseng.

Additional information

This article is part of the Topical Collection on Stem Cell Therapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YT., Tighe, S., Chen, SL. et al. Engineering of Human Corneal Endothelial Grafts. Curr Ophthalmol Rep 3, 207–217 (2015). https://doi.org/10.1007/s40135-015-0077-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-015-0077-5

Keywords

Navigation