Skip to main content

Uncertainty in Facility Location Models for Emergency Medical Services

  • Chapter
  • First Online:
Uncertainty in Facility Location Problems

Abstract

Emergency medical service (EMS) systems aim to respond to emergency calls and provide life-saving care to patients. The location of EMS resources is critical to providing this care in a timely manner, and as a result, EMS facility location problems have received a tremendous amount of attention since the 1960s, and their advancement is directly tied to a wide range of facility location problems. This chapter reviews uncertainty in facility location problems applied to EMS systems and provides an intuition for and understanding of EMS problem settings. The chapter begins by explaining EMS response processes and the goals of the early deterministic models. Next, it introduces probabilistic formulations that account for uncertainty in ambulance availability, response time, and demand. Then, it highlights directions within the field and the role of uncertainty in these problem settings. This includes EMS systems with tiered units, systems that consider resource relocation, EMS systems in developing countries, and several other areas. Lastly, it concludes by providing insights into how these models are used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Zeid, I., & Frost, J. R. (2005). SARPlan: a decision support system for Canadian Search and Rescue operations. European Journal of Operational Research, 162(3), 630–653.

    Article  Google Scholar 

  • Ahrens, M. (2017). Trends and patterns of U.S. fire loss. Quincy, MA: National Fire Protection Association.

    Google Scholar 

  • Akbari, A., Pelot, R., & Eiselt, H. A. (2018). A modular capacitated multiobjective model for locating maritime search and rescue vessels. Annals of Operations Research, 267(1), 3–28.

    Article  Google Scholar 

  • Al-Shaqsi, S. (2010a). Models of international emergency medical service (EMS) systems. Oman Medical Journal, 25(4), 320–323.

    Google Scholar 

  • Al-Shaqsi, S. (2010b). Response time as a sole performance indicator in EMS: Pitfalls and solutions. Open Access Emergency Medicine, 2, 1–6.

    Article  Google Scholar 

  • Alanis, R., Ingolfsson, A., & Kolfal, B. (2013). A Markov chain model for an EMS system with repositioning. Production and Operations Management, 22(1), 216–231.

    Article  Google Scholar 

  • Alotaibi, A., Alghamdi, A., Reynard, C., & Body, R. (2021). Accuracy of emergency medical services (EMS) telephone triage in identifying acute coronary syndrome (ACS) for patients with chest pain: a systematic literature review. BMJ Open, 11(8), e045815.

    Article  Google Scholar 

  • Alsalloum, O. I., & Rand, G. K. (2006). Extensions to emergency vehicle location models. Computers & Operations Research, 33(9), 2725–2743.

    Article  Google Scholar 

  • Andersson, T., & Väarbrand, P. (2007). Decision support tools for ambulance dispatch and relocation. The Journal of the Operational Research Society, 58(2), 195–201.

    Article  Google Scholar 

  • Ansari, S., Yoon, S., & Albert, L. A. (2017). An approximate hypercube model for public service systems with co-located servers and multiple response. Transportation Research Part E: Logistics and Transportation Review, 103, 143–157.

    Article  Google Scholar 

  • Aringhieri, R., Bruni, M. E., Khodaparasti, S., & van Essen, J. T. (2017). Emergency medical services and beyond: addressing new challenges through a wide literature review. Computers & Operations Research, 78, 349–368.

    Article  Google Scholar 

  • Azofra, M., Péerez-Labajos, C. A., Blanco, B., & Achúutegui, J. J. (2007). Optimum placement of sea rescue resources. Safety Science, 45(9), 941–951.

    Article  Google Scholar 

  • Bélanger, V., Ruiz, A., & Soriano, P. (2019). Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles. European Journal of Operational Research, 272(1), 1–23.

    Article  Google Scholar 

  • BaÅŸsar, A., Çatay, B., & Ãœnlüyurt, T. (2011). A multi-period double coverage approach for locating the emergency medical service stations in Istanbul. The Journal of the Operational Research Society, 62(4), 627–637.

    Article  Google Scholar 

  • BaÅŸsar, A., Çatay, B., & Ãœnlüyurt, T. (2012). A taxonomy for emergency service station location problem. Optimization Letters, 6(6), 1147–1160.

    Article  Google Scholar 

  • BaÅŸsdemir, M. M. (2000). Locating search and rescue stations in the Aegean and western Mediterranean regions of Turkey. Journal of Aeronautics and Space Technologies, 1(3), 63–76.

    Google Scholar 

  • Bagai, A., McNally, B. F., Al-Khatib, S. M., Brent Myers, J., Kim, S., Karlsson, L., Torp-Pedersen, C., Wissenberg, M., van Diepen, S., Fosbol, E. L., Monk, L., Abella, B. S., Granger, C. B., & Jollis, J. G. (2013). Temporal differences in out-of-hospital cardiac arrest incidence and survival. Circulation, 128(24), 2595–2602.

    Article  Google Scholar 

  • Baker, D. W. & Byrd, J. (1980). A lesson in timing: a nonemergency solution to an emergency service decision. Interfaces, 10(3), 30–33.

    Article  Google Scholar 

  • Ball, M. O. & Lin, F. L. (1993). A reliability model applied to emergency service vehicle location. Operations Research, 41(1), 18–36.

    Article  Google Scholar 

  • Bastian, N. D. (2010). A robust, multi-criteria modeling approach for optimizing aeromedical evacuation asset emplacement. The Journal of Defense Modeling and Simulation, 7(1), 5–23.

    Article  Google Scholar 

  • Bastian, N. D., Fulton, L. V., Mitchell, R., Pollard, W., Wierschem, D., & Wilson, R. (2012). The future of vertical lift: initial insights for aircraft capability and medical planning. Military Medicine, 177(7), 863–869.

    Article  Google Scholar 

  • Batta, R., Dolan, J. M., & Krishnamuthy, N. N. (1989). The maximal expected covering location problem: revisited. Transportation Science, 23(4), 277–287.

    Article  Google Scholar 

  • BBC. (2022). Drone helps save cardiac arrest patient in Sweden. BBC News.

    Google Scholar 

  • Bennett, V. L., Eaton, D. J., & Church, R. L. (1982). Selecting sites for rural health workers. Social Science & Medicine, 16(1), 63–72.

    Article  Google Scholar 

  • Beraldi, P., & Bruni, M. E. (2009). A probabilistic model applied to emergency service vehicle location. European Journal of Operational Research, 196(1), 323–331.

    Article  Google Scholar 

  • Beraldi, P., Bruni, M. E., & Conforti, D. (2004). Designing robust emergency medical service via stochastic programming. European Journal of Operational Research, 158(1), 183–193.

    Article  Google Scholar 

  • Berman, O., Drezner, Z., & Krass, D. (2010). Generalized coverage: new developments in covering location models. Computers & Operations Research, 37(10), 1675–1687.

    Article  Google Scholar 

  • Bianchi, G., & Church, R. L. (1988). A hybrid fleet model for emergency medical service system design. Social Science & Medicine, 26(1), 163–171.

    Article  Google Scholar 

  • Bledsoe, B. (2003). EMS myth #7: system status management lowers response times and enhances patient care. EMSWorld, 32(9), 158–159.

    Google Scholar 

  • Bohm, K., & Kurland, L. (2018). The accuracy of medical dispatch - a systematic review. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 26, 94.

    Article  Google Scholar 

  • Boujemaa, R., Jebali, A., Hammami, S., Ruiz, A., & Bouchriha, H. (2018). A stochastic approach for designing two-tiered emergency medical service systems. Flexible Services and Manufacturing Journal, 30(1), 123–152.

    Article  Google Scholar 

  • Boujemaa, R., Jebali, A., Hammami, S., & Ruiz, A. (2020). Multi-period stochastic programming models for two-tiered emergency medical service system. Computers & Operations Research, 123, 104974.

    Article  Google Scholar 

  • Boutilier, J. J., & Chan, T. C. Y. (2020). Ambulance emergency response optimization in developing countries. Operations Research, 68(5), 1315–1334.

    Article  Google Scholar 

  • Boutilier, J. J., & Chan, T. C. Y. (2022). Drone network design for cardiac arrest response. Manufacturing & Service Operations Management, 24(5), 2387–2796.

    Article  Google Scholar 

  • Boutilier, J. J., Brooks, S. C., Janmohamed, A., Byers, A., Buick, J. E., Zhan, C., Schoellig, A. P., Cheskes, S., Morrison, L. J., Chan, T. C. Y., & Rescu Epistry Investigators. (2017). Optimizing a drone network to deliver automated external defibrillators. Circulation, 135(25), 2454–2465.

    Article  Google Scholar 

  • Branas, C. C., & Revelle, C. S. (2001). An iterative switching heuristic to locate hospitals and helicopters. Socio-Economic Planning Sciences, 35(1), 11–30.

    Article  Google Scholar 

  • Brandeau, M., & Larson, R. C. (1986). Extending and applying the hypercube queueing model to deploy ambulances in Boston. National Emergency Training Center, 22, 121–153.

    Google Scholar 

  • Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147(3), 451–463.

    Article  Google Scholar 

  • Budge, S., Ingolfsson, A., & Zerom, D. (2010). Empirical analysis of ambulance travel times: the case of Calgary emergency medical services. Management Science, 56(4), 716–723.

    Article  Google Scholar 

  • Chaiken, J. M. (1978). Transfer of emergency service deployment models to operating agencies. Management Science, 24(7), 719–731.

    Article  Google Scholar 

  • Chan, T. C. Y. (2017). Rise and shock: optimal defibrillator placement in a high-rise building. Prehospital Emergency Care, 21(3), 309–314.

    Article  Google Scholar 

  • Chan, T. C. Y., Shen, Z.-J. M., & Siddiq, A. (2017). Robust defibrillator deployment under cardiac arrest location uncertainty via row-and-column generation. Operations Research, 66(2), 358–379.

    Article  Google Scholar 

  • Chan, T. C. Y., Li, H., Lebovic, G., Tang, S. K., Chan, J. Y. T., Cheng, H. C. K., Morrison, L. J., & Brooks, S. C. (2013). Identifying locations for public access defibrillators using mathematical optimization. Circulation, 127(17), 1801–1809.

    Article  Google Scholar 

  • Channouf, N., L’Ecuyer, P., Ingolfsson, A., & Avramidis, A. (2007). The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta. Health Care Management Science, 10, 25–45.

    Article  Google Scholar 

  • Cho, S.-H., Jang, H., Lee, T., & Turner, J. (2014). Simultaneous location of trauma centers and helicopters for emergency medical service planning. Operations Research, 62(4), 751–771.

    Article  Google Scholar 

  • Chong, K. C., Henderson, S. G., & Lewis, M. E. (2016). The vehicle mix decision in emergency medical service systems. Manufacturing & Service Operations Management, 18(3), 347–360.

    Article  Google Scholar 

  • Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101–118.

    Article  Google Scholar 

  • Crawford, W., & Wilson, S. (2019). Emergency medical services. Alabama Department of Public Health Administrative Code (p. 6). Alabama State Board of Health.

    Google Scholar 

  • Dami, F., Golay, C., Pasquier, M., Fuchs, V., Carron, P.-N., & Hugli, O. (2015). Prehospital triage accuracy in a criteria based dispatch centre. BMC Emergency Medicine, 15, 32.

    Article  Google Scholar 

  • Dao, T. H. D., Zhou, Y., Thill, J.-C., & Delmelle, E. (2012). Spatiotemporal location modeling in a 3D indoor environment: the case of AEDs as emergency medical devices. International Journal of Geographical Information Science, 26(3), 469–494.

    Article  Google Scholar 

  • Daskin, M. S. (1983). A maximum expected covering location model: formulation, properties and heuristic solution. Transportation Science, 17(1), 48–70.

    Article  Google Scholar 

  • Daskin, M. S. (1987). Location, dispatching and routing models for emergency services with stochastic travel times. In A. Ghosh, & G. Rushton (Eds.), Spatial analysis and location-allocation models (pp. 224–265). Van Nostrand Reinhold Co.

    Google Scholar 

  • Daskin, M. S. & Stern, E. H. (1981). A hierarchical objective set covering model for emergency medical service vehicle deployment. Transportation Science, 15(2), 137.

    Article  Google Scholar 

  • Daskin, M. S., Hogan, K., & ReVelle, C. (1988). Integration of multiple, excess, backup, and expected covering models. Environment and Planning B: Planning and Design, 15, 15–35.

    Article  Google Scholar 

  • Degel, D., Wiesche, L., Rachuba, S., & Werners, B. (2015). Time-dependent ambulance allocation considering data-driven empirically required coverage. Health Care Management Science, 18(4), 444–458.

    Article  Google Scholar 

  • Do, Y. K., Foo, K., Ng, Y. Y., & Ong, M. E. H. (2013). A quantile regression analysis of ambulance response time. Prehospital Emergency Care, 17(2), 170–176.

    Article  Google Scholar 

  • Eaton, D. J., Sánchez, U. H. MI., Lantigua, R. R., & Morgan, J. (1986). Determining ambulance deployment in Santo Domingo, Dominican Republic. The Journal of the Operational Research Society, 37(2), 113–126.

    Article  Google Scholar 

  • Eiselt, H. A. & Marianov, V. (2009). Gradual location set covering with service quality. Socio-Economic Planning Sciences, 43(2), 121–130.

    Article  Google Scholar 

  • Enayati, S., Mayorga, M. E., Rajagopalan, H. K., & Saydam, C. (2018). Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers. Omega, 79, 67–80.

    Article  Google Scholar 

  • Erdemir, E. T., Batta, R., Rogerson, P. A., Blatt, A., & Flanigan, M. (2010). Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach. European Journal of Operational Research, 207(2), 736–749.

    Article  Google Scholar 

  • Erkut, E., Ingolfsson, A., & ErdoÄŸan, G. (2008). Ambulance location for maximum survival. Naval Research Logistics, 55(1), 42–58.

    Article  Google Scholar 

  • Erkut, E., Ingolfsson, A., Sim, T., & ErdoÄŸan, G. (2009). Computational comparison of five maximal covering models for locating ambulances. Geographical Analysis, 41(1), 43–65.

    Article  Google Scholar 

  • Fitch, J. (2005). Response times: myths, measurement and management. The Journal of Emergency Medicine, 30(9), 47.

    Google Scholar 

  • Fleischman, R. J., Lundquist, M., Jui, J., Newgard, C. D., & Warden, C. (2013). Predicting ambulance time of arrival to the emergency department using global positioning system and Google Maps. Prehospital Emergency Care: Official Journal of the National Association of EMS Physicians and the National Association of State EMS Directors, 17(4), 458–465.

    Article  Google Scholar 

  • Foo, C. P. Z., Ahghari, M., & MacDonald, R. D. (2010). Use of Geographic Information Systems to determine new helipad locations and improve timely response while mitigating risk of helicopter emergency medical services operations. Prehospital Emergency Care, 14(4), 461–468.

    Article  Google Scholar 

  • Fujiwara, O., Makjamroen, T., & Gupta, K. K. (1987). Ambulance deployment analysis: a case study of Bangkok. European Journal of Operational Research, 31(1), 9–18.

    Article  Google Scholar 

  • Fulton, L. V., Lasdon, L. S., McDaniel, R. R., & Nicholas Coppola, M. (2010). Two-stage stochastic optimization for the allocation of medical assets in steady-state combat operations. The Journal of Defense Modeling and Simulation, 7(2), 89–102.

    Article  Google Scholar 

  • Galvão, R. D., Chiyoshi, F. Y., & Morabito, R. (2005). Towards unified formulations and extensions of two classical probabilistic location models. Computers & Operations Research, 32(1), 15–33.

    Article  Google Scholar 

  • Garrett, M. X. (2013). USCENTCOM review of MEDEVAC procedures in Afghanistan. Technical Report. United States Central Command.

    Google Scholar 

  • Gendreau, M., Laporte, G., & Semet, F. (1997). Solving an ambulance location model by Tabu search. Location Science, 5(2), 75–88.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., & Semet, F. (2001). A dynamic model and parallel Tabu search heuristic for real-time ambulance relocation. Parallel Computing, 27(12), 1641–1653.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., & Semet, F. (2006). The maximal expected coverage relocation problem for emergency vehicles. The Journal of the Operational Research Society, 57(1), 22–28.

    Article  Google Scholar 

  • Godfrey, A., & Loyd, J. W. (2021). EMS helicopter activation. StatPearls. Treasure Island (FL): StatPearls Publishing.

    Google Scholar 

  • Goldberg, J. (2004). Operations research models for the deployment of emergency services vehicles. EMS Management Journal, 1(1), 20.

    Google Scholar 

  • Goldberg, J., & Paz, L. (1991). Locating emergency vehicle bases when service time depends on call location. Transportation Science, 25(4), 264–280.

    Article  Google Scholar 

  • Goldberg, J., Dietrich, R., Chen, J. M., George Mitwasi, M., Valenzuela, T., & Criss, E. (1990). Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ. European Journal of Operational Research, 49(3), 308–324.

    Article  Google Scholar 

  • Grannan, B. C., Bastian, N. D., & McLay, L. A. (2015). A maximum expected covering problem for locating and dispatching two classes of military medical evacuation air assets. Optimization Letters, 9(8), 1511–1531.

    Article  Google Scholar 

  • Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450–459.

    Article  Google Scholar 

  • Hakimi, S. L. (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Operations Research, 13(3), 462–475.

    Article  Google Scholar 

  • Hausner, J. (1975). Determining the travel characteristics of emergency service vehicles. New York: RAND Corporation.

    Google Scholar 

  • Henderson, S. G. (2011). Operations research tools for addressing current challenges in emergency medical services. In J. J. Cochran, L. A. Cox, P. Keskinocak, J. P. Kharoufeh, & J. Cole Smith (Eds.), Wiley encyclopedia of operations research and management science. Hoboken, NJ, USA: John Wiley & Sons, Inc. isbn: 978-0-470-40053-1.

    Google Scholar 

  • Hogan, K., & Revelle, C. (1986). Concepts and applications of backup coverage. Management Science, 32(11), 1434–1444.

    Article  Google Scholar 

  • Holmén, J., Herlitz, J., Ricksten, S.-E., Strömsöe, A., Hagberg, E., Axelsson, C., & Rawshani, A. (2020). Shortening ambulance response time increases survival in out-of-hospital cardiac arrest. Journal of the American Heart Association, 9(21), e017048.

    Article  Google Scholar 

  • Ingolfsson, A., Erkut, E., & Budge, S. (2003). Simulation of single start station for Edmonton EMS. Journal of the Operational Research Society, 54(7), 736–746.

    Article  Google Scholar 

  • Ingolfsson, A., Budge, S., & Erkut, E. (2008). Optimal ambulance location with random delays and travel times. Health Care Management Science, 11(3), 262–274.

    Article  Google Scholar 

  • Jagtenberg, C. J., Bhulai, S., & van der Mei, R. D. (2015). An efficient heuristic for real-time ambulance redeployment. Operations Research for Health Care, 4, 27–35.

    Article  Google Scholar 

  • Jagtenberg, C. J., Bhulai, S., & van der Mei, R. D. (2017). Dynamic ambulance dispatching: is the closest-idle policy always optimal? Health Care Management Science, 20(4), 517–531.

    Article  Google Scholar 

  • Jarvis, J. P. (1985). Approximating the equilibrium behavior of multi-server loss systems. Management Science, 31(2), 235–239.

    Article  Google Scholar 

  • Johnson, A. M., Cunningham, C. J., Arnold, E., Rosamond, W. D., & Zégre-Hemsey, J. K. (2021). Impact of using drones in emergency medicine: what does the future hold? Open Access Emergency Medicine, 13, 487–498.

    Article  Google Scholar 

  • Kamenetzky, R. D., Shuman, L. J., & Wolfe, H. (1982). Estimating need and demand for prehospital care. Operations Research, 30(6), 1148–1167.

    Article  Google Scholar 

  • Karatas, M., Razi, N., & Gunal, M. M. (2017). An ILP and simulation model to optimize search and rescue helicopter operations. Journal of the Operational Research Society, 68(11), 1335–1351.

    Article  Google Scholar 

  • Karatas, M., Yakıcı, E., & Razi, N. (2019). Military facility location problems: a brief survey. Operations Research for Military Organizations, 1–27. isbn: 978-1-5225-5513-1.

    Google Scholar 

  • Keneally, S. K., Robbins, M. J., & Lunday, B. J. (2016). A Markov decision process model for the optimal dispatch of military medical evacuation assets. Health Care Management Science, 19(2), 111–129.

    Article  Google Scholar 

  • Kim, S.-H., & Whitt, W. (2014). Are call center and hospital arrivals well modeled by nonhomogeneous Poisson processes? Manufacturing & Service Operations Management, 16(3), 464–480.

    Article  Google Scholar 

  • Kim, S. J., Lim, G. J., Cho, J., & Côté, M. J. (2017). Drone-aided healthcare services for patients with chronic diseases in rural areas. Journal of Intelligent & Robotic Systems, 88(1), 163–180.

    Article  Google Scholar 

  • Knight, V. A., Harper, P. R., & Smith, L. (2012). Ambulance allocation for maximal survival with heterogeneous outcome measures. Omega, 40(6), 918–926. Special Issue on Forecasting in Management Science.

    Google Scholar 

  • Knoblauch, A. M., de la Rosa, S., Sherman, J., Blauvelt, C., Matemba, C., Maxim, L., Defawe, O. D., Gueye, A., Robertson, J., McKinney, J., Brew, J., Paz, E., Small, P. M., Tanner, M., Rakotosamimanana, N., & Lapierre, S. G. (2019). Bi-directional drones to strengthen healthcare provision: experiences and lessons from Madagascar, Malawi and Senegal. BMJ Global Health, 4(4), e001541.

    Article  Google Scholar 

  • Kok, A. L., Hans, E. W., & Schutten, J. M. J. (2012). Vehicle routing under time-dependent travel times: the impact of congestion avoidance. Computers & Operations Research, 39(5), 910–918.

    Article  Google Scholar 

  • Krafft, T., García-Castrillo Riesgo, L., Fischer, M., Lippert, F., Overton, J., & Robertson-Steel, I. (2003). EMS data-based health surveillance system project report (p. 79). Munich: European Emergency Data Project.

    Google Scholar 

  • Krishnan, K., Marla, L., & Yue, Y. (2016). Robust ambulance allocation using risk-based metrics. In 2016 8th International Conference on Communication Systems and Networks, 1–6.

    Google Scholar 

  • Kunkel, A., & McLay, L. A. (2013). Determining minimum staffing levels during snowstorms using an integrated simulation, regression, and reliability model. Health Care Management Science, 16(1), 14–26.

    Article  Google Scholar 

  • Larson, R. C. (1974). A hypercube queuing model for facility location and redistricting in urban emergency services. Computers & Operations Research, 1(1), 67–95.

    Article  Google Scholar 

  • Larson, R. C. (1975). Approximating the performance of urban emergency service systems. Operations Research, 23, 845–868.

    Article  Google Scholar 

  • Lecky, F. E., Reynolds, T., Otesile, O., Hollis, S., Turner, J., Fuller, G., Sammy, I., Williams-Johnson, J., Geduld, H., Tenner, A. G., French, S., Govia, I., Balen, J., Goodacre, S., Marahatta, S. B., De-Vries, S., Sawe, H. R., El-Shinawi, M., Mfinanga, J., Rubiano, A. M., Chebbi, H., Do Shin, S., Ferrer, J. M. E., Haddadi, M., Firew, T., Taubert, K., Lee, A., Convocar, P., Jamaluddin, S., Kotecha, S., Abu Yaqeen, E., Wells, K., & Wallis, L. (2020). Harnessing interdisciplinary collaboration to improve emergency care in low- and middle-income countries (LMICs): results of research prioritisation setting exercise. BMC Emergency Medicine, 20(1), 68.

    Article  Google Scholar 

  • Lejeune, M. A., & Margot, F. (2018). Aeromedical battlefield evacuation under endogenous uncertainty in casualty delivery times. Management Science, 64(12), 5481–5496.

    Article  Google Scholar 

  • Mandell, M. B. (1998). Covering models for two-tiered emergency medical services systems. Location Science, 6(1), 355–368.

    Article  Google Scholar 

  • Marianov, V., & ReVelle, C. (1992). A probabilistic fire-protection siting model with joint vehicle reliability requirements. Papers in Regional Science, 71(3), 217–241.

    Article  Google Scholar 

  • Marianov, V., & Revelle, C. (1994). The queuing probabilistic location set covering problem and some extensions. Socio-Economic Planning Sciences, 28(3), 167–178.

    Article  Google Scholar 

  • Marianov, V., & Serra, D. (2001). Hierarchical location-allocation models for congested systems. European Journal of Operational Research, 135(1), 195–208.

    Article  Google Scholar 

  • Marianov, V., & Serra, D. (2002). Location–allocation of multiple-server service centers with constrained queues or waiting times. Annals of Operations Research, 111(1), 35–50.

    Article  Google Scholar 

  • Marla, L., Krishnan, K., & Deo, S. (2021). Managing EMS systems with user abandonment in emerging economies. IISE Transactions, 53(4), 389–406.

    Article  Google Scholar 

  • Mason, A. J. (2013). Simulation and real-time optimised relocation for improving ambulance operations. In B. T. Denton (Ed.), Handbook of healthcare operations management (vol. 184, pp. 289–317). New York, NY: Springer New York. isbn: 978-1-4614-5885-2.

    Google Scholar 

  • Matteson, D. S., McLean, M. W., Woodard, D. B., & Henderson, S. G. (2011). Forecasting emergency medical service call arrival rates. The Annals of Applied Statistics, 5(2), 1379–1406.

    Google Scholar 

  • Maxwell, M. S., Restrepo, M., Henderson, S. G., & Topaloglu, H. (2010). Approximate dynamic programming for ambulance redeployment. INFORMS Journal on Computing, 22(2), 266–281.

    Article  Google Scholar 

  • Maxwell, M. S., Cao Ni, E., Tong, C., Henderson, S. G., Topaloglu, H., & Hunter, S. R. (2014). A bound on the performance of an optimal ambulance redeployment policy. Operations Research, 62(5), 1014–1027.

    Article  Google Scholar 

  • McLay, L. A. (2009). A maximum expected covering location model with two types of servers. IIE Transactions, 41(8), 730–741.

    Article  Google Scholar 

  • McLay, L. A. & Mayorga, M. E. (2010). Evaluating emergency medical service performance measures. Health Care Management Science, 13(2), 124–136.

    Article  Google Scholar 

  • McLay, L. A. & Mayorga, M. E. (2013). A model for optimally dispatching ambulances to emergency calls with classification errors in patient priorities. IIE Transactions, 45(1), 1–24.

    Article  Google Scholar 

  • McLay, L. A. & Moore, H. (2012). Hanover county improves its response to emergency medical 911 patients. Interfaces, 42(4), 380–394.

    Article  Google Scholar 

  • Moeini, M., Jemai, Z., & Sahin, E. (2015). Location and relocation problems in the context of the emergency medical service systems: a case study. Central European Journal of Operations Research, 23(3), 641–658.

    Article  Google Scholar 

  • Moresky, R. T., Razzak, J., Reynolds, T., Wallis, L. A., Wachira, B. W., Nyirenda, M., Carlo, W. A., Lin, J., Patel, S., Bhoi, S., Risko, N., Wendle, L. A., & Calvello Hynes, E. J. (2019). Advancing research on emergency care systems in low-income and middle-income countries: ensuring high-quality care delivery systems. BMJ Global Health, 4(Suppl 6), e001265.

    Article  Google Scholar 

  • Mullie, A., Van Hoeyweghen, R., & Quets, A. (1989). Influence of time intervals on outcome of CPR. Resuscitation, 17, S23–S33.

    Article  Google Scholar 

  • Nair, R., & Miller-Hooks, E. (2009). Evaluation of relocation strategies for emergency medical service vehicles. Transportation Research Record, 2137(1), 63–73.

    Article  Google Scholar 

  • Naoum-Sawaya, J., & Elhedhli, S. (2013). A stochastic optimization model for real-time ambulance redeployment. Computers & Operations Research, 40(8), 1972–1978.

    Article  Google Scholar 

  • Narad, R. A., & Driesbock, K. R. (1999). Regulation of ambulance response times in California. Prehospital Emergency Care, 3(2), 131–135.

    Article  Google Scholar 

  • Narad, R. A., & Gillespie, W. (1998). The public vs private debate: Separating facts from values. Prehospital Emergency Care, 2(3), 196–202.

    Article  Google Scholar 

  • Nasrollahzadeh, A. A., Khademi, A., & Mayorga, M. E. (2018). Real-time ambulance dispatching and relocation. Manufacturing & Service Operations Management, 20(3), 467–480.

    Article  Google Scholar 

  • National Highway Traffic Safety Administration. (2014). Traffic safety facts: EMS research note: EMS system demographics. Department of Transportation Highway Safety 812 041; DOT HS 812 041. United States National Highway Traffic Safety Administration.

    Google Scholar 

  • Nelas, J., & Dias, J. (2021). Locating emergency vehicles: modelling the substitutability of resources and the impact of delays in the arrival of assistance. Operations Research Perspectives, 8, 100202.

    Article  Google Scholar 

  • Nickel, S., Reuter-Oppermann, M., & Saldanha-da-Gama, F. (2016). Ambulance location under stochastic demand: a sampling approach. Operations Research for Health Care, 8, 24–32.

    Article  Google Scholar 

  • Noyan, N. (2010). Alternate risk measures for emergency medical service system design. Annals of Operations Research, 181(1), 559–589.

    Article  Google Scholar 

  • Olhede, S. C. & Wolfe, P. J. (2018). The growing ubiquity of algorithms in society: implications, impacts and innovations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128), 20170364.

    Article  Google Scholar 

  • Pozner, C. N., Zane, R., Nelson, S. J., & Levine, M. (2004). International EMS systems: The United States: past, present, and future. Resuscitation, 60(3), 239–244.

    Article  Google Scholar 

  • Prydz, E. B., & Wadhwa, D. (2019). Classifying countries by income. The World Bank.

    Google Scholar 

  • Rajagopalan, H. K., Saydam, C., & Xiao, J. (2008). A multiperiod set covering location model for dynamic redeployment of ambulances. Computers & Operations Research, 35(3), 814–826.

    Article  Google Scholar 

  • Repede, J. F., & Bernardo, J. J. (1994). Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. European Journal of Operational Research, 75(3), 567–581.

    Article  Google Scholar 

  • Repede, J. F., Jeffries, C. J., & Hubbard, E. (1993). ALIAS: a graphical user interface for an ambulance location model. International Journal of Operations & Production Management, 13(12), 36–46.

    Article  Google Scholar 

  • Restrepo, M., Henderson, S. G., & Topaloglu, H. (2009). Erlang loss models for the static deployment of ambulances. Health Care Management Science, 12(1), 67–79.

    Article  Google Scholar 

  • Rettke, A., Robbins, M., & Lunday, B. (2016). Approximate dynamic programming for the dispatch of military medical evacuation assets. European Journal of Operational Research, 254, 824–839.

    Article  Google Scholar 

  • ReVelle, C., & Hogan, K. (1988). A reliability-constrained siting model with local estimates of busy fractions. Environment and Planning B: Planning and Design, 15(2), 143–152.

    Article  Google Scholar 

  • ReVelle, C., & Hogan, K. (1989). The maximum availability location problem. Transportation Science, 23(3), 192–200.

    Article  Google Scholar 

  • ReVelle, C., Bigman, D., Schilling, D., Cohon, J., & Church, R. (1977). Facility location: a review of context-free and EMS models. Health Services Research, 12(2), 129–146.

    Google Scholar 

  • Sariyer, G., Ataman, M. G., Akay, S., Sofuoglu, T., & Sofuoglu, Z. (2017). An analysis of emergency medical services demand: Time of day, day of the week, and location in the city. Turkish Journal of Emergency Medicine, 17(2), 42–47.

    Article  Google Scholar 

  • Saydam, C., Rajagopalan, H. K., Sharer, E., & Lawrimore-Belanger, K. (2013). The dynamic redeployment coverage location model. Health Systems, 2(2), 103–119.

    Article  Google Scholar 

  • Schierbeck, S., Hollenberg, J., Nord, A., Svensson, L., Nordberg, P., Ringh, M., Forsberg, S., Lundgren, P., Axelsson, C., & Claesson, A. (2021). Automated external defibrillators delivered by drones to patients with suspected out-of-hospital cardiac arrest. European Heart Journal, 42, 1478–1487.

    Article  Google Scholar 

  • Schilling, D., Jack Elzinga, D., Cohon, J., Church, R. L., & ReVelle, C. (1979). The TEAM/FLEET models for simultaneous facility and equipment siting. Transportation Science, 13(2), 163–175.

    Article  Google Scholar 

  • Schmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European Journal of Operational Research, 219(3), 611–621.

    Article  Google Scholar 

  • Schmid, V., & Doerner, K. F. (2010). Ambulance location and relocation problems with time-dependent travel times. European Journal of Operational Research, 207(3), 1293–1303.

    Article  Google Scholar 

  • Scott, J., & Scott, C. (2017). Drone delivery models for healthcare. In: Hawaii International Conference on System Sciences.

    Google Scholar 

  • Steenhoff, T. C., Siddiqui, D. I., & Zohn, S. F. (2022). EMS air medical transport. StatPearls. Treasure Island (FL): StatPearls Publishing.

    Google Scholar 

  • Stoesser, C. E., Boutilier, J. J., Sun, C. L. F., Brooks, S. C., Cheskes, S., Dainty, K. N., Feldman, M., Ko, D. T., Lin, S., Morrison, L. J., Scales, D. C., & Chan, T. C. Y. (2021). Moderating effects of out-of-hospital cardiac arrest characteristics on the association between EMS response time and survival. Resuscitation, 169, 31–38.

    Article  Google Scholar 

  • Stout, J., Pepe, P. E., & Mosesso, V. N. (2000). All–advanced life support vs tiered-response ambulance systems. Prehospital Emergency Care, 4(1), 1–6.

    Article  Google Scholar 

  • Sudtachat, K., Mayorga, M. E., & McLay, L. A. (2014). Recommendations for dispatching emergency vehicles under multitiered response via simulation. International Transactions in Operational Research, 21(4), 581–617.

    Article  Google Scholar 

  • Sun, C. L. F., Demirtas, D., Brooks, S. C., Morrison, L. J., & Chan, T. C. Y. (2016). Overcoming spatial and temporal barriers to public access defibrillators via optimization. Journal of the American College of Cardiology, 68(8), 836–845.

    Article  Google Scholar 

  • Swersey, A. J., Goldring, L., & Geyer, E. D. (1993). Improving fire department productivity: merging fire and emergency medical units in New Haven. Interfaces, 23(1), 109–129.

    Article  Google Scholar 

  • Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363–1373.

    Article  Google Scholar 

  • United Nations. (2010). The millennium development goals report. Technical Report. New York, NY.

    Google Scholar 

  • Urdaneta, L. F., Miller, B. K., Ringenberg, B. J., Cram, A. E., & Scott, D. H. (1987). Role of an emergency helicopter transport service in rural trauma. Archives of Surgery, 122(9), 992–996.

    Article  Google Scholar 

  • van Barneveld, T. C., Bhulai, S., & van der Mei, R. D. (2017a). A dynamic ambulance management model for rural areas: computing redeployment actions for relevant performance measures. Health Care Management Science, 20(2), 165–186.

    Article  Google Scholar 

  • van Barneveld, T. C., van der Mei, R. D., & Bhulai, S. (2017b). Compliance tables for an EMS system with two types of medical response units. Computers & Operations Research, 80, 68—81.

    Article  Google Scholar 

  • van den Berg, P. L. & Aardal, K. (2015). Time-dependent MEXCLP with startup and relocation cost. European Journal of Operational Research, 242(2), 383–389.

    Article  Google Scholar 

  • Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014). Short-term traffic forecasting: where we are and where we’re going. Transportation Research Part C: Emerging Technologies, 43, 3–19.

    Article  Google Scholar 

  • Wagner, M. R., & Radovilsky, Z. (2012). Optimizing boat resources at the U.S. Coast Guard: deterministic and stochastic models. Operations Research, 60(5), 1035–1049.

    Article  Google Scholar 

  • Westgate, B. S., Woodard, D. B., Matteson, D. S., & Henderson, S. G. (2016). Large-network travel time distribution estimation for ambulances. European Journal of Operational Research, 252(1), 322–333.

    Article  Google Scholar 

  • Wilson, B., Gratton, M. C., Overton, J., & Watson, W. A. (1992). Unexpected ALS procedures on non-emergency ambulance calls: The value of a single-tier system. Prehospital and Disaster Medicine, 7(4), 380–382.

    Article  Google Scholar 

  • Woodard, D., Nogin, G., Koch, P., Racz, D., Goldszmidt, M., & Horvitz, E. (2017). Predicting travel time reliability using mobile phone GPS data. Transportation Research Part C: Emerging Technologies, 75, 30–44.

    Article  Google Scholar 

  • Yoon, S., & Albert, L. A. (2018). An expected coverage model with a cutoff priority queue. Health Care Management Science, 21(4), 517–533.

    Article  Google Scholar 

  • Yoon, S., & Albert, L. A. (2020). A dynamic ambulance routing model with multiple response. Transportation Research Part E: Logistics and Transportation Review, 133, 101807.

    Article  Google Scholar 

  • Yoon, S., Albert, L. A., & White, V. M. (2021). A stochastic programming approach for locating and dispatching two types of ambulances. Transportation Science, 55(2), 275–296.

    Article  Google Scholar 

  • Zhang, Z.-H., & Jiang, H. (2014). A robust counterpart approach to the bi-objective emergency medical service design problem. Applied Mathematical Modelling, 38(3), 1033–1040.

    Article  Google Scholar 

  • Zhou, Z., Matteson, D. S., Woodard, D. B., Henderson, S. G., & Micheas, A. C. (2015). A spatio-temporal point process model for ambulance demand. Journal of the American Statistical Association, 110(509), 6–15.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Mecklenburg EMS Agency and NEMSIS for data used in this chapter. The content reproduced from the NEMSIS Database remains the property of the National Highway Traffic Safety Administration. The National Highway Traffic Safety Administration is not responsible for any claims arising from works based on the original data, text, tables, or figures. The third author was in part supported by the National Science Foundation Award 2000986. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US Government or the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Albert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stratman, E.G., Boutilier, J.J., Albert, L.A. (2023). Uncertainty in Facility Location Models for Emergency Medical Services. In: Eiselt, H.A., Marianov, V. (eds) Uncertainty in Facility Location Problems. International Series in Operations Research & Management Science, vol 347. Springer, Cham. https://doi.org/10.1007/978-3-031-32338-6_9

Download citation

Publish with us

Policies and ethics