Skip to main content
Log in

A taxonomy for emergency service station location problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The emergency service station (ESS) location problem has been widely studied in the literature since 1970s. There has been a growing interest in the subject especially after 1990s. Various models with different objective functions and constraints have been proposed in the academic literature and efficient solution techniques have been developed to provide good solutions in reasonable times. However, there is not any study that systematically classifies different problem types and methodologies to address them. This paper presents a taxonomic framework for the ESS location problem using an operations research perspective. In this framework, we basically consider the type of the emergency, the objective function, constraints, model assumptions, modeling, and solution techniques. We also analyze a variety of papers related to the literature in order to demonstrate the effectiveness of the taxonomy and to get insights for possible research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alsalloum O.I., Rand G.K.: Extensions to emergency vehicle location models. Comput. Oper. Res. 33, 2725–2743 (2006)

    Article  MATH  Google Scholar 

  2. Aly A.A., White J.A.: Probabilistic formulation of the emergency service location problem. J. Oper. Res. Soc. 29, 1167–1179 (1978)

    MATH  Google Scholar 

  3. Andersson T., Värbrand P.: Decision support tools for ambulance dispatch and relocation. J. Oper. Res. Soc. 58, 195–201 (2007)

    MATH  Google Scholar 

  4. Araz C., Selim H., Özkarahan I.: A fuzzy multi-objective covering-based vehicle location model for emergency services. Comput. Oper. Res. 34, 705–726 (2007)

    Article  MATH  Google Scholar 

  5. Arogundade O.T., Akinwale A.T., Adekoya A.F., Awe Oludare G.: A 0-1 model for fire and emergency service facility location selection: a case study in Nigeria. J. Theor. Appl. Inf. Tech. 9, 50–59 (2005)

    Google Scholar 

  6. Aytuğ H., Saydam C.: Solving large-scale maximum expected covering location problems by genetic algorithms: a comparative study. Eur. J. Oper. Res. 141, 480–494 (2002)

    Article  MATH  Google Scholar 

  7. Badri M.A., Mortagy A.K., Alsayed C.A.: A multi-objective model for locating fire stations. Eur. J. Oper. Res. 110, 243–260 (1998)

    Article  MATH  Google Scholar 

  8. Balcık B., Beamon B.M.: Facility location in humanitarian relief. Int. J. Logist. Res. Appl. 11, 101–121 (2008)

    Article  Google Scholar 

  9. Ball M.O., Lin F.L.: A reliability model applied to emergency service vehicle location. Oper. Res. 41, 18–36 (1993)

    Article  MATH  Google Scholar 

  10. Başar A., Çatay B., Ünlüyurt T.: A multi-period double coverage approach for locating the emergency medical service stations in Istanbul. J. Oper. Res. Soc. 62, 627–637 (2011)

    Article  Google Scholar 

  11. Batta R., Dolan J.M., Krishnamurty N.N.: The maximal expected covering location problem: revisited. Transp. Sci. 23, 277–287 (1989)

    Article  MATH  Google Scholar 

  12. Batta R., Mannur N.R.: Covering-location models for emergency situations that require multiple response units. Manag. Sci. 36, 16–23 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beraldi P., Bruni M.E.: A probabilistic model applied to emergency service vehicle location. Eur. J. Oper. Res. 196, 323–331 (2009)

    Article  MATH  Google Scholar 

  14. Berman O., Krass D.: The generalized maximal covering location problem. Comput. Oper. Res. 29, 563–581 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Branas C.C., ReVelle C.S.: An iterative switching heuristic to locate hospitals and helicopters. Socioecon. Plan. Sci. 35, 11–30 (2001)

    Article  Google Scholar 

  16. Brandeau M.L., Chiu S.S.: An overview of representative problems in location research. Manag. Sci. 35, 645–674 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brotcorne L., Laporte G., Semet F.: Ambulance location and relocation models. Eur. J. Oper. Res. 147, 451–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Church R., ReVelle C.: The maximal covering location problem. Pap. Reg. Sci. Assoc. 32, 101–118 (1974)

    Article  Google Scholar 

  19. Curtin K.M., McCall K.H., Qiu F.: Determining optimal police patrol areas with maximal covering and backup covering location models. Netw. Spatial Econ. 10, 125–145 (2010)

    Article  MATH  Google Scholar 

  20. Daskin M.S., Stern E.H.: A hierarchical objective set covering model for emergency medical service vehicle deployment. Transp. Sci. 15, 137–152 (1981)

    Article  MathSciNet  Google Scholar 

  21. Daskin M.S.: A maximum expected location model: formulation, properties and heuristic solution. Transp. Sci. 7, 48–70 (1983)

    Article  Google Scholar 

  22. Daskin M.S.: Network and Discrete Location: Models, Algorithms and Applications. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  23. Diaz B.A., Rodriguez F.: A simple search heuristic for the MCLP: application to the location of ambulance bases in a rural region. Omega 25, 181–187 (1997)

    Article  Google Scholar 

  24. Dimopoulou M., Giannikos I.: Towards an integrated framework for forest fire control. Eur. J. Oper. Res. 152, 476–486 (2004)

    Article  MATH  Google Scholar 

  25. Doerner K.F., Gutjahr W.J., Hartl R.F., Karall M., Reimann M.: Heuristic solution of an extended double-coverage ambulance location problem for Austria. Cen. Eur. J. Oper. Res. 13, 325–340 (2005)

    MATH  Google Scholar 

  26. Eaton D.J., Sánchez H.M., Lantigua R.R., Morgan J.: Determining ambulance deployment in Santo Domingo, Dominican Republic. J. Oper. Res. Soc. 37, 113–126 (1986)

    Google Scholar 

  27. Fitzsimmons J.A., Srikar B.N.: Emergency ambulance location using the contiguous zone search routine. J. Oper. Manag. 2, 225–237 (1982)

    Article  Google Scholar 

  28. Fujiwara O., Makjamroen T., Gupta K.K.: Ambulance deployment analysis: a case study of Bangkok. Eur. J. Oper. Res. 31, 9–18 (1987)

    Article  Google Scholar 

  29. Galvão R.D., Chiyoshi F.Y., Morabito R.: Towards unified formulations and extensions of two classical probabilistic location models. Comput. Oper. Res. 32, 15–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Galvão R.D., Morabito R.: Emergency service systems: the use of the hypercube queueing model in the solution of probabilistic location problems. Int. Trans. Oper. Res. 15, 525–549 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gendreau M., Laporte G., Semet F.: Solving an ambulance location model by tabu search. Locat. Sci. 5, 75–88 (1997)

    Article  MATH  Google Scholar 

  32. Gendreau M., Laporte G., Semet F.: A dynamic model and parallel tabu search heuristic for real time ambulance relocation. Parallel Comput. 27, 1641–1653 (2001)

    Article  MATH  Google Scholar 

  33. Goldberg J., Dietrich R., Chen J.M., Mitwasi M.G.: Validating and applying a model for locating emergency medical services in Tucson, AZ. Eur. J. Oper. Res. 49, 308–324 (1990)

    Article  Google Scholar 

  34. Goldberg J.B.: Operations research models for the deployment of emergency services vehicles. EMS Manag. J. 1, 20–39 (2004)

    Google Scholar 

  35. Gunawardene G.: Dynamic versions of set covering type public facility location problems. Eur. J. Oper. Res. 10, 190–195 (1982)

    Article  Google Scholar 

  36. Harewood S.I.: Emergency ambulance deployment in Barbados: a multi-objective approach. J. Oper. Res. Soc. 53, 185–192 (2002)

    Article  MATH  Google Scholar 

  37. Hogan K., ReVelle C.: Concepts and applications of backup coverage. Manag. Sci. 32, 1434–1444 (1986)

    Article  Google Scholar 

  38. Hogg J.M.: The siting of fire stations. Oper. Res. Q. 19, 275–287 (1968)

    Article  Google Scholar 

  39. Huang B., Liu N., Chandramouli M.: A GIS supported ant algorithm for the linear feature covering problem with distance constraints. Decis. Support Syst. 42, 1063–1075 (2006)

    Article  Google Scholar 

  40. Iannoni A.P., Morabito R.: A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways. Transp. Res. Part E Logist. Transp. Rev. 43, 755–771 (2007)

    Article  Google Scholar 

  41. Iannoni A.P., Morabito R., Saydam C.: An optimization approach for ambulance location and the districting of the response segments on highways. Eur. J. Oper. Res. 195, 528–542 (2009)

    Article  MATH  Google Scholar 

  42. Ingolfsson A., Budge S., Erkut E.: Optimal ambulance location with random delays and travel times. Health Care Manag. Sci. 11, 262–274 (2008)

    Article  Google Scholar 

  43. Jia H., Ordonez F., Dessouky M.: A modeling framework for facility location of medical services for large-scale emergencies. IIE Trans. 39, 41–55 (2007)

    Article  Google Scholar 

  44. Jia H., Ordonez F., Dessouky M.: Solution approaches for facility location of medical supplies for large scale emergencies. Comput. Ind. Eng. 52, 257–276 (2007)

    Article  Google Scholar 

  45. Karasakal O., Karasakal E.K.: A maximal covering location model in the presence of partial coverage. Comput. Oper. Res. 31, 1515–1526 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Karpinski M., Zelikovsky A.: Approximating dense cases of covering problems. In: Pardalos, P.M., Du, D. (eds) Network Design: Connectivity and Facilities Location: DIMACS Series in Discrete Mathematics and Theoretical Computer Science 40, pp. 169–178. American Mathematical Society, Rhode Island (1998)

    Google Scholar 

  47. Kolesar P., Walker W.E.: An algorithm for the dynamic relocation of fire companies. Oper. Res. 22, 249–274 (1974)

    Article  Google Scholar 

  48. Krarup J., Pruzan P.M.: Ingredients of locational analysis. In: Mrchandani, P.B., Francis, R.L. (eds) Discrete Location Theory, pp. 1–54. Wiley, New York (1990)

    Google Scholar 

  49. Larson R.C.: A hypercube queuing model for facility location and redistricting in urban emergency services. Comput. Oper. Res 1, 67–95 (1974)

    Article  MathSciNet  Google Scholar 

  50. Liu N., Huang B., Chandramouli M.: Optimal siting of fire stations using GIS and ANT algorithm. J. Comput. Civ. Eng. 20, 361–369 (2006)

    Article  Google Scholar 

  51. Marianov V., ReVelle C.: A probabilistic fire-protection siting model with joint vehicle relaibility requirements. Pap. Reg. Sci. J. RSAI 71, 217–241 (1992)

    Article  Google Scholar 

  52. Marianov V., ReVelle C.: The capacitated standart response fire protection siting problem: deterministic and probabilistic models. Ann. Oper. Res. 40, 303–322 (1992)

    Article  MATH  Google Scholar 

  53. Marianov V., ReVelle C.S.: The queuing probabilistic location set covering problem and some extensions. Socioecon. Plann. Sci. 28, 167–178 (1994)

    Article  Google Scholar 

  54. Marianov V., ReVelle C.S.: Siting emergency services. In: Drezner, Z. (eds) Facility Location, pp. 199–223. Springer, New York (1995)

    Google Scholar 

  55. Monarchi D.E., Hendrick T.E., Plane D.R.: Simulation for fire department deployment policy analysis. Decis. Sci. 8, 211–227 (1977)

    Article  Google Scholar 

  56. Narasimhan S., Pirkul H., Schilling D.A.: Capacitated emergency facility siting with multiple levels of backup. Ann. Oper. Res. 40, 323–337 (1992)

    Article  MATH  Google Scholar 

  57. Neebe A.W.: A procedure for locating emergency-service facilities for all possible response distances. J. Oper. Res. Soc. 39, 743–748 (1988)

    MATH  Google Scholar 

  58. Pirkul H., Schilling D.A.: The siting of emergency service facilities with workload capacities and backup service. Manag. Sci. 34, 896–908 (1988)

    Article  Google Scholar 

  59. Pirkul H., Schilling D.A.: The capacitated maximal covering location problem with backup service. Ann. Oper. Res. 18, 141–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pirkul H., Schilling D.A.: The maximal covering location problem with capacities on total workload. Manag. Sci. 37, 233–248 (1991)

    Article  MATH  Google Scholar 

  61. Plane D.R., Hendrick T.E.: Mathematical programming and the location of fire companies for the Denver fire department. Oper. Res. 25, 563–578 (1977)

    Article  MATH  Google Scholar 

  62. Rajagopalan H.K., Vergara F.E., Saydam C., Xiao J.: Developing effective meta-heuristics for a probabilistic location model via experimental design. Eur. J. Oper. Res. 177, 83–101 (2007)

    Article  MATH  Google Scholar 

  63. Rajagopalan H.K., Saydam C., Xiao J.: A multiperiod set covering location model for dynamic redeployment of ambulances. Comput. Oper. Res. 35, 814–826 (2008)

    Article  MATH  Google Scholar 

  64. Rajagopalan H.K., Saydam C.: A minimum expected response model: formulation, heuristic solution, and application. Socioecon. Plann. Sci. 43, 253–262 (2009)

    Article  Google Scholar 

  65. Reisman A.: Management science knowledge: it’s creation generalization and consolidation. Quorum Books Publishing Company, Westport (1992)

    Google Scholar 

  66. Repede J.F., Bernardo J.J.: Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur. J. Oper. Res. 75, 567–581 (1994)

    Article  Google Scholar 

  67. ReVelle C., Bigman D., Schiling D., Cohon J., Church R.: Facility Location: a review of context, free and EMS models. Health Serv. Res. 12, 129–146 (1977)

    Google Scholar 

  68. ReVelle C., Hogan K.: The maximum availability location problem. Transp. Sci. 23, 192–200 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  69. ReVelle C., Scholssberg M., Williams J.: Solving the maximal covering location problem with heuristic concentration. Comput. Oper. Res. 35, 427–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  70. Savas E.S.: Simulation and cost-effectiveness analysis of New York’s emergency ambulance service. Manag. Sci. 15, 608–626 (1969)

    Article  Google Scholar 

  71. Saydam C., Repede J., Burwell T.: Accurate estimation of expected coverage: a comparative study. Socioecon. Plann. Sci. 28, 113–120 (1994)

    Article  Google Scholar 

  72. Saydam C., Aytuğ H.: Accurate estimation of expectedcoverage: revisited. Socioecon. Plann. Sci. 37, 69–80 (2003)

    Article  Google Scholar 

  73. Schilling D.A., Elzinga D.J., Cohon J., Church R.L., ReVelle C.S.: The TEAM/FLEET models for simultaneous facility and equipment sitting. Transp. Sci. 13, 163–175 (1979)

    Article  Google Scholar 

  74. Schilling D.A.: Dynamic location modeling for public sector facilities: a multicriteria approach. Decis. Sci. 11, 714–724 (1980)

    Article  Google Scholar 

  75. Schmid V., Doerner K.F.: Ambulance location and relocation problems with time-dependent travel times. Eur. J. Oper. Res. 207, 1293–1303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Schreuder J.A.M.: Application of a location model to fire stations in Rotterdam. Eur. J. Oper. Res. 6, 212–219 (1981)

    Article  Google Scholar 

  77. Shuman L.J., Hardwick C.P., Huber G.A.: Location of ambulatory care centers in a metropolitan area. Health Serv. Res. 8, 121–138 (1973)

    Google Scholar 

  78. Siler K.F.: Level-load retrieval times: a new criterion for EMS facility sites. Health Serv. Res. 12, 416–426 (1977)

    Google Scholar 

  79. Silva F., Serra D.: Locating emergency services with priority rules: the priority queuing covering location problem. J. Oper. Res. Soc. 59, 1229–1238 (2008)

    Article  MATH  Google Scholar 

  80. Simpson N.C., Hancock P.G.: Fifty years of operational research and emergency response. J. Oper. Res. Soc. 60, 126–139 (2009)

    Article  Google Scholar 

  81. Syam S., Cote M.J.: A location–allocation model for service providers with application to not-for-profit health care organizations. Omega 38, 157–166 (2010)

    Article  Google Scholar 

  82. Tavakoli A., Lightner C.: Implementing a mathematical model for locating EMS vehicles in Fayetteville, NC. Comput. Oper. Res. 31, 1549–1563 (2004)

    Article  MATH  Google Scholar 

  83. Toregas C., Swain R., ReVelle C., Bergman L.: The location of emergency service facilities. Oper. Res. 19, 1363–1373 (1971)

    Article  MATH  Google Scholar 

  84. Yang L., Jones B.F., Yang S.H.: A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms. Eur. J. Oper. Res. 181, 903–915 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonguç Ünlüyurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Başar, A., Çatay, B. & Ünlüyurt, T. A taxonomy for emergency service station location problem. Optim Lett 6, 1147–1160 (2012). https://doi.org/10.1007/s11590-011-0376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0376-1

Keywords

Navigation