Skip to main content

Poincaré Gauge Gravity Primer

  • Chapter
  • First Online:
Modified and Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 1017))

  • 554 Accesses

Abstract

We give an introductory overview of the classical Poincaré gauge theory of gravity formulated on the spacetime manifold that carries the Riemann-Cartan geometry with nontrivial curvature and torsion. After discussing the basic mathematical structures at an elementary level in the framework of the standard tensor analysis, we formulate the general dynamical scheme of Poincaré gauge gravity for the class of Yang-Mills type models, and consider a selected number of physically interesting consequences of this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. O’Raifeartaigh, N. Straumann, Gauge theory: historical origins and some modern developments. Rev. Mod. Phys. 72, 1–23 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. N. Straumann, Hermann Weyl’s space-time geometry and the origin of gauge theory 100 years ago, in One Hundred Years of Gauge Theory, ed. by S. De Bianchi, C. Kiefer. Fundamental Theories of Physics, vol. 199 (Springer, Cham, 2020), pp. 3–23

    Google Scholar 

  3. F.W. Hehl, Yu.N. Obukhov, Conservation of energy-momentum of matter as the basis for the gauge theory of gravitation, in One Hundred Years of Gauge Theory, ed. by S. De Bianchi, C. Kiefer. Fundamental Theories of Physics, vol. 199 (Springer, Cham, 2020), pp. 217–252

    Google Scholar 

  4. L. O’Raifeartaigh, Group Structure of Gauge Theories (Cambridge University Press, Cambridge, 1986)

    Book  MATH  Google Scholar 

  5. G. Mack, Physical principles, geometrical aspects, and locality properties of gauge field theories. Fortsch. Phys. 29, 135–185 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Chaichian, N.F. Nelipa, Introduction to Gauge Field Theories (Springer, Berlin, 1984)

    Book  Google Scholar 

  7. C.N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R. Utiyama, Invariant theoretical interpretation of interaction. Phys. Rev. 101, 1597–1607 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D.W. Sciama, The analogy between charge and spin in general relativity, in Recent Developments in General Relativity, Festschrift for L. Infeld (Pergamon Press, Oxford; PWN, Warsaw, 1962), pp. 415–439

    Google Scholar 

  10. T.W.B. Kibble, Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212–221 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. F.W. Hehl, P. von der Heyde, G.D. Kerlick, J.M. Nester, General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. F.W. Hehl, Four lectures on Poincaré gauge field theory, in Proc. of the 6th Course of the School of Cosmology and Gravitation on Spin, Torsion, Rotation, and Supergravity, Erice, May 1979, ed. by P.G. Bergmann, V. de Sabbata (Plenum, New York, 1980), pp. 5–61

    Google Scholar 

  13. F.W. Hehl, J. Nitsch, P. von der Heyde, Gravitation and Poincaré gauge field theory with quadratic Lagrangian, in General Relativity and Gravitation—One Hundred Years After the Birth of Albert Einstein, ed. by A. Held, vol. 1 (Plenum Press, New York, 1980), pp. 329–355

    Google Scholar 

  14. A. Trautman, Yang-Mills theory and gravitation: a comparison, in Geometric Techniques in Gauge Theories, ed. by R. Martini, E.M. de Jager, Lect. Notes Math., vol. 926 (Springer, Berlin, 1982), pp. 179–189

    Google Scholar 

  15. J.M. Nester, Gravity, torsion and gauge theory, in An Introduction to Kaluza-Klein Theories, ed. by H.C. Lee (World Scientific, Singapore, 1984), pp. 83–115

    Google Scholar 

  16. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Metric affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. I.L. Shapiro, Physical aspects of the space-time torsion. Phys. Rep. 357, 113–213 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Blagojević, Gravitation and Gauge Symmetries (Institute of Physics, Bristol, 2002)

    Google Scholar 

  19. M. Blagojević, F.W. Hehl (eds.), Gauge Theories of Gravitation: A Reader with Commentaries (Imperial College Press, London, 2013)

    MATH  Google Scholar 

  20. J.M. Nester, C.-M. Chen, Gravity: a gauge theory perspective. Int. J. Mod. Phys. D 25, 1645002 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. E.W. Mielke, Geometrodynamics of Gauge Fields: On the Geometry of Yang-Mills and Gravitational Gauge Theories, 2nd edn. (Springer, Cham, 2017)

    Book  MATH  Google Scholar 

  22. V.N. Ponomarev, A.O. Barvinsky, Yu.N. Obukhov, Gauge Approach and Quantization Methods in Gravity Theory (Nauka, Moscow, 2017)

    Book  Google Scholar 

  23. F.W. Hehl, Yu.N. Obukhov, Élie Cartan’s torsion in geometry and in field theory, an essay. Ann. Fond. Louis de Broglie 32, 157–194 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Yu.N. Obukhov, Poincaré gauge gravity: selected topics. Int. J. Geom. Meth. Mod. Phys. 3, 95–137 (2006)

    Article  Google Scholar 

  25. Yu.N. Obukhov, Poincaré gauge gravity: an overview. Int. J. Geom. Meth. Mod. Phys. 15(Suppl. 1), 1840005 (2018)

    Google Scholar 

  26. E. Schrödinger, Space-Time Structure (Cambridge University Press, London, 1960)

    MATH  Google Scholar 

  27. J.A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and Its Geometric Applications, 2nd edn. (Springer, Berlin, 1954)

    Google Scholar 

  28. A. Einstein, The Meaning of Relativity, 5th revised edn. (Princeton University Press, Princeton, 1956)

    Google Scholar 

  29. H. Weyl, Raum-Zeit-Materie (Springer, Berlin, 1923)

    Book  MATH  Google Scholar 

  30. R. Weitzenböck, Invariantentheorie (Noordhoff, Groningen, 1923)

    MATH  Google Scholar 

  31. T. Harko, Thermodynamic interpretation of the generalized gravity models with geometry-matter coupling. Phys. Rev. D 90, 044067 (2014)

    Article  ADS  Google Scholar 

  32. H.J. Schmidt, Fourth order gravity: equations, history, and applications to cosmology. Int. J. Geom. Meth. Mod. Phys. 4, 209–248 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. O. Bertolami, C.G. Böhmer, T. Harko, F.S.N. Lobo, Extra force in \(f(R)\) modified theories of gravity. Phys. Rev. D. 75, 104016 (2007)

    Google Scholar 

  34. N. Straumann, Problems with modified theories of gravity, as alternatives to dark energy, in Beyond Einstein, ed. by D.E. Rowe, T. Sauer, S.A. Walter. Einstein Studies, vol. 14 (Springer Nature, New York, 2018), pp. 243–259

    Google Scholar 

  35. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from \(F(R)\) theory to Lorentz non-invariant models. Phys. Rep. 505, 59–144 (2011)

    Google Scholar 

  36. V. Faraoni, S. Capozziello (eds.), Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (Springer, Dordrecht, 2011)

    MATH  Google Scholar 

  37. S. Bahamonde, K.F. Dialektopoulos, M. Hohmann, J.L. Levi Said, Teleparallel gravity: foundations and cosmology, in Modified Gravity and Cosmology, ed. by E.N. Saridakis, R. Lazkoz, V. Salzano, P.V. Moniz, S. Capozziello, J.B. Jiménez, M. De Laurentis, G.J. Olmo (Springer, Cham, 2021), pp. 191–242

    Chapter  MATH  Google Scholar 

  38. F.W. Hehl, G.D. Kerlick, Metric-affine variational principles in general relativity. I. Riemannian spacetime. Gen. Relat. Grav. 9, 691–710 (1978)

    Article  MATH  Google Scholar 

  39. F.W. Hehl, G.D. Kerlick, Metric-affine variational principles in general relativity. II. Relaxation of the Riemannian constraint. Gen. Relat. Grav. 13, 1037–1056 (1981)

    Article  MATH  Google Scholar 

  40. T.P. Sotiriou, V. Faraoni, \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    Google Scholar 

  41. F.W. Hehl, Yu.N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Birkhäuser, Boston, 2003)

    Book  MATH  Google Scholar 

  42. R. Weitzenböck, Differentialinvarianten in der Einsteinschen Theorie des Fernparallelismus. Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-math. Klasse (1928), pp. 466–474

    Google Scholar 

  43. A. Einstein, Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus. Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-math. Klasse (1928), pp. 217–221

    Google Scholar 

  44. K. Hayashi, T. Nakano, Extended translation invariance and associated gauge fields. Prog. Theor. Phys. 38, 491–507 (1967)

    Article  ADS  Google Scholar 

  45. Y.M. Cho, Einstein Lagrangian as the translational Yang-Mills Lagrangian. Phys. Rev. D 14, 2521–2525 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  46. J. Nitsch, F.W. Hehl, Translational gauge theory of gravity: postNewtonian approximation and spin precession. Phys. Lett. B 90, 98–102 (1980)

    Article  ADS  Google Scholar 

  47. K. Hayashi, T. Shirafuji, New general relativity. Phys. Rev. D 19, 3524–3553 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Yu.N. Obukhov, J.G. Pereira, Metric affine approach to teleparallel gravity. Phys. Rev. D 67, 044016 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  49. J.G. Pereira, Yu.N. Obukhov, Gauge structure of teleparallel gravity. Universe 5(6), 139 (2019)

    Google Scholar 

  50. T. Koivisto, M. Hohmann, T. Złośnik, The general linear Cartan khronon. Universe 5(6), 168 (2019)

    Google Scholar 

  51. R. Aldrovandi, J.G. Pereira, Teleparallel Gravity: An Introduction (Springer, Dordrecht, 2013)

    Book  MATH  Google Scholar 

  52. J.W. Maluf, F.F. Faria, Teleparallel gauge theory of gravity. Ann. Phys. (Berlin) 524, 366–370 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J.W. Maluf, The teleparallel equivalent of general relativity. Ann. Phys. (Berlin) 525, 339–357 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  54. Y. Itin, Energy momentum current for coframe gravity. Class. Quantum Grav. 19, 173 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. F.W. Hehl, Y. Itin, Yu.N. Obukhov, On Kottler’s path: origin and evolution of the premetric program in gravity and in electrodynamics. Int. J. Mod. Phys. D 25, 1640016 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Y. Itin, Yu.N. Obukhov, J. Boos, F.W. Hehl, Premetric teleparallel theory of gravity and its local and linear constitutive law. Eur. Phys. J. C 78, 907 (2018)

    Article  ADS  Google Scholar 

  57. Y. Itin, F.W. Hehl, Yu.N. Obukhov, Premetric equivalent of general relativity: teleparallelism. Phys. Rev. D 95, 084020 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Krššák, R.J. van den Hoogen, J.G. Pereira, C.G. Boehmer, A.A. Coley, Teleparallel theories of gravity: illuminating a fully invariant approach. Class. Quantum Grav. 36, 183001 (2019)

    Article  ADS  MATH  Google Scholar 

  59. A. Lichnerowicz, Geometry of Groups of Transformations (Noordhoff International Publishing, Leyden, 1977)

    MATH  Google Scholar 

  60. K. Yano, The Theory of Lie Derivatives and Its Applications (North-Holland, Amsterdam, 1955)

    Google Scholar 

  61. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. T. Eguchi, P.B. Gilkey, A.J. Hanson, Gravitation, gauge theories and differential geometry. Phys. Rep. 66, 213–393 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  63. F.W. Hehl, W. Kopczyński, J.D. McCrea, E.W. Mielke, Chern-Simons terms in metric-affine spacetime: Bianchi identities as Euler-Lagrange equations. J. Math. Phys. 32, 2169–2180 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. O. Chandia, J. Zanelli, Torsional topological invariants (and their relevance for real life). AIP Conf. Proc. 419, 251–264 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  65. F.W. Hehl, On the energy tensor of spinning massive matter in classical field theory and general relativity. Rep. Math. Phys. 9, 55–82 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  66. J. Weyssenhoff, A. Raabe, Relativistic dynamics of spin-fluids and spin-particle. Acta Phys. Pol. 9, 7–18 (1947)

    MathSciNet  Google Scholar 

  67. E. Cosserat, F. Cosserat, Theorie des corps deformables (Hermann, Paris, 1909)

    MATH  Google Scholar 

  68. Yu.N. Obukhov, V.A. Korotky, The Weyssenhoff fluid in Einstein-Cartan theory. Class. Quantum Grav. 4, 1633–1657 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. D.E. Neville, Spin-2 propagating torsion. Phys. Rev. D 23, 1244–1249 (1981)

    Article  ADS  Google Scholar 

  70. E. Sezgin. P. van Nieuwenhuizen, New ghost-free gravity Lagrangians with propagating torsion. Phys. Rev. D 21, 3269–3280 (1980)

    Google Scholar 

  71. Yu.N. Obukhov, V.N. Ponomariev, V.V. Zhytnikov, Quadratic Poincaré gauge theory of gravity: a comparison with the general relativity theory. Gen. Relat. Grav. 21, 1107–1142 (1989)

    Article  ADS  MATH  Google Scholar 

  72. G.K. Karananas, The particle spectrum of parity-violating Poincaré gravitational theory. Class. Quantum Grav. 32, 055012 (2015). Corrigendum: Class. Quantum Grav. 32, 089501 (2015)

    Google Scholar 

  73. M. Blagojević, B. Cvetković, General Poincaré gauge theory: Hamiltonian structure and particle spectrum. Phys. Rev. D 98, 104018 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  74. A.Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969)

    Book  MATH  Google Scholar 

  75. W.-T. Ni, Yang’s gravitational field equations. Phys. Rev. Lett. 35, 319–320 (1975)

    Article  ADS  Google Scholar 

  76. M. Hohmann, Spacetime and observer space symmetries in the language of Cartan geometry. J. Math. Phys. 57, 082502 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. M. Hohmann, Metric-affine geometries with spherical symmetry. Symmetry 12, 453 (2020)

    Article  ADS  Google Scholar 

  78. Yu.N. Obukhov, Generalized Birkhoff theorem in the Poincaré gauge gravity theory. Phys. Rev. D 102, 104059 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  79. S. Ramaswamy, P. Yasskin, Birkhoff theorem for an \(R+R^2\) theory of gravity with torsion. Phys. Rev. D 19, 2264–2267 (1979)

    Google Scholar 

  80. R.T. Rauch, S.J. Shaw, H.T. Nieh, Birkhoff’s theorem for ghost-free tachyon-free \(R+R^{2}+Q^2\) theories with torsion. Gen. Relat. Grav. 14, 331–354 (1982)

    Google Scholar 

  81. R. Rauch, H.T. Nieh, Birkhoff’s theorem for general Riemann-Cartan \(R+R^2\) theories of gravity. Phys. Rev. D 24, 2029–2048 (1981)

    Google Scholar 

  82. R.T. Rauch, Asymptotic flatness, reflection symmetry, and Birkhoff’s theorem for \(R+R^2\) actions containing quadratic torsion. Phys. Rev. D 25, 577–580 (1982)

    Google Scholar 

  83. D.E. Neville, Gravity Lagrangian with ghost-free curvature-squared terms. Phys. Rev. D 18, 3535–3543 (1978)

    Article  ADS  Google Scholar 

  84. D.E. Neville, Birkhoff theorems for \(R+R^2\) gravity theories with torsion. Phys. Rev. D 21, 2770–2775 (1980)

    Google Scholar 

  85. A. de la Cruz-Dombriz, F.J.M. Torralba, Birkhoff’s theorem for stable torsion theories. J. Cosmol. Astropart. Phys. 03, 002 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  86. A. Trautman, Spin and torsion may avert gravitational singularity. Nat. Phys. Sci. 242, 7–8 (1973)

    Article  ADS  Google Scholar 

  87. D. Palle, On certain relationships between cosmological observables in the Einstein-Cartan gravity. Nuovo Cim. B 111, 671–675 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  88. D. Palle, On primordial cosmological density fluctuations in the Einstein-Cartan gravity and COBE data. Nuovo Cim. B 114, 853–860 (1999)

    ADS  Google Scholar 

  89. S.D. Brechet, M.P. Hobson, A.N. Lasenby, Weyssenhoff fluid dynamics in general relativity using a \(1 + 3\) covariant approach. Class. Quantum Grav. 24, 6329–6348 (2007)

    Google Scholar 

  90. S.D. Brechet, M.P. Hobson, A.N. Lasenby, Classical big-bounce cosmology: dynamical analysis of a homogeneous and irrotational Weyssenhoff fluid. Class. Quantum Grav. 25, 245016 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. D. Palle, On the Einstein-Cartan cosmology vs. Planck data. J. Exp. Theor. Phys. 118, 587–592 (2014)

    Article  ADS  Google Scholar 

  92. Yu.N. Obukhov, F.W. Hehl, General relativity as a special case of Poincaré gauge gravity. Phys. Rev. D 102, 044058 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  93. P. von der Heyde, Is gravitation mediated by the torsion of spacetime? Z. Naturf. 31a, 1725–1726 (1976)

    Google Scholar 

  94. C. Heinicke, F.W. Hehl, Schwarzschild and Kerr Solutions of Einstein’s Field Equation – an introduction. Int. J. Mod. Phys. D 24, 1530006 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Yu.N. Obukhov, Exact solutions in Poincaré gauge gravity theory. Universe 5(5), 127 (2019)

    Google Scholar 

  96. J.A.R. Cembranos, J.G. Valcarcel, New torsion black hole solutions in Poincaré gauge theory. J. Cosmol. Astropart. Phys. 01, 014 (2017)

    Article  ADS  MATH  Google Scholar 

  97. J.A.R. Cembranos, J.G. Valcarcel, Extended Reissner-Nordström solutions sourced by dynamical torsion. Phys. Lett. B 779, 143–150 (2018)

    Article  ADS  MATH  Google Scholar 

  98. B.P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Google Scholar 

  99. C.-M. Chen, J.M. Nester, W.-T. Ni, A brief history of gravitational wave research. Chin. J. Phys. 55, 142–169 (2017)

    Article  MathSciNet  Google Scholar 

  100. V.D. Zakharov, Gravitational Waves in Einstein’s Theory (Halsted Press, New York, 1973)

    MATH  Google Scholar 

  101. J.B. Griffiths, Colliding Plane Waves in General Relativity (Clarendon Press, Oxford, 1991)

    MATH  Google Scholar 

  102. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd edn., Secs. 24, 31 (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  103. H.W. Brinkmann, On Riemann spaces conformal to Euclidean space. Proc. Natl. Acad. Sci. 9, 1–3 (1923)

    Article  ADS  MATH  Google Scholar 

  104. H.W. Brinkmann, Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 119–145 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  105. Yu.N. Obukhov, Gravitational waves in Poincaré gauge gravity theory. Phys. Rev. D 95, 084028 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  106. M. Blagojević, B. Cvetković, Yu.N. Obukhov, Generalized plane waves in Poincaré gauge theory of gravity. Phys. Rev. D 96, 064031 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  107. M. Fontanini, E. Huguet, M. Le Delliou, Teleparallel gravity equivalent of general relativity as a gauge theory: translation or Cartan connection? Phys. Rev. D 99, 064006 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  108. M. Le Delliou, E. Huguet, M. Fontanini, Teleparallel theory as a gauge theory of translations: remarks and issues. Phys. Rev. D 101, 024059 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  109. E. Huguet, M. Le Delliou, M. Fontanini, Cartan approach to teleparallel equivalent to general relativity: a review. Int. J. Geom. Meth. Mod. Phys. 18(Supp. 01), 2140004 (2021)

    Google Scholar 

  110. E. Huguet, M. Le Delliou, M. Fontanini, Z.-C. Lin, Teleparallel gravity as a gauge theory: coupling to matter using the Cartan connection. Phys. Rev. D 103, 044061 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  111. C. Pellegrini, J. Plebanski, Tetrad fields and gravitational fields. Mat. Fys. Skr. Dan. Vid. Selsk. 2(4), 1–39 (1963)

    MathSciNet  MATH  Google Scholar 

  112. F.A. Kaempffer, Vierbein field theory of gravitation. Phys. Rev. 165, 1420–1423 (1968)

    Article  ADS  Google Scholar 

  113. P. Spindel, Dynamical torsion gravity backgrounds. Phys. Rev. D 103, 124054 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  114. A.V. Minkevich, Generalized cosmological Friedmann equations without gravitational singularity. Phys. Lett. A 80, 232–234 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  115. A.V. Minkevich, Towards the theory of regular accelerating Universe in Riemann-Cartan space-time. Int. J. Mod. Phys. A 31, 1641011 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. J. Magueijo, T.G. Złośnik, T.W.B. Kibble, Cosmology with a spin. Phys. Rev. D 87, 063504 (2013)

    Article  ADS  Google Scholar 

  117. J. Magueijo, T.G. Złośnik, Parity violating Friedmann universes. Phys. Rev. D 100, 084036 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  118. N. Popławski, Big bounce from spin and torsion. Gen. Relat. Gravit. 44, 1007–1014 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. N. Popławski, Cosmological consequences of gravity with spin and torsion. Astron. Rev. 8, 108–115 (2013)

    ADS  Google Scholar 

  120. N. Popławski, The simplest origin of the big bounce and inflation. Int. J. Mod. Phys. D 27, 1847020 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  121. D. Puetzfeld, Status of non-Riemannian cosmology. New Astron. Rev. 49, 59–64 (2005)

    Article  ADS  Google Scholar 

  122. H. Zhang, L. Xu, Late-time acceleration and inflation in a Poincaré gauge cosmological model. J. Cosmol. Astropart. Phys. 09, 050 (2019)

    Article  ADS  Google Scholar 

  123. D. Kranas, C.G. Tsagas, J.D. Barrow, D. Iosifidis, Friedmann-like universes with torsion. Eur. Phys. J. C 79, 341 (2019)

    Article  ADS  Google Scholar 

  124. J.D. Barrow, C.G. Tsagas, G. Fanaras, Friedmann-like universes with torsion: a dynamical system approach. Eur. Phys. J. C 79, 764 (2019)

    Article  ADS  Google Scholar 

  125. A.N. Ivanov, M. Wellenzohn, Einstein-Cartan gravity with torsion field serving as an origin for the cosmological constant or dark energy density. Astrophys. J. 829, 47 (2016)

    Article  ADS  Google Scholar 

  126. P. Baekler, F.W. Hehl, Beyond Einstein-Cartan gravity: quadratic torsion and curvature invariants with even and odd parity including all boundary terms. Class. Quantum Grav. 28, 215017 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. P. Baekler, F.W. Hehl, J.M. Nester, Poincaré gauge theory of gravity: Friedman cosmology with even and odd parity modes: analytic part. Phys. Rev. D 83, 024001 (2011)

    Article  ADS  Google Scholar 

  128. H. Chen, F.-H. Ho, J.M. Nester, C.-H. Wang, H.-J. Yo, Cosmological dynamics with propagating Lorentz connection modes of spin zero. J. Cosmol. Astropart. Phys. 10, 027 (2009)

    Article  ADS  Google Scholar 

  129. F.H. Ho, J.M. Nester, Poincaré gauge theory with coupled even and odd parity spin-0 modes: cosmological normal modes. Ann. d. Physik (Berlin) 524, 97–106 (2012)

    Article  ADS  MATH  Google Scholar 

  130. F.H. Ho, J.M. Nester, Poincaré gauge theory with coupled even and odd parity dynamic spin-0 modes: dynamical equations for isotropic Bianchi cosmologies. Int. J. Mod. Phys. D 20, 2125–2138 (2011)

    Article  ADS  MATH  Google Scholar 

  131. F.H. Ho, H. Chen, J.M. Nester, H.J. Yo, General Poincaré gauge theory cosmology. Chin. J. Phys. 53, 110109 (2015)

    Google Scholar 

  132. A. Einstein, Geometrie und Erfahrung. Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Klasse 1, 123–130 (1921)

    MATH  Google Scholar 

  133. P.B. Yasskin, W.R. Stoeger, Propagating equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D 21, 2081–2094 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  134. F.W. Hehl, Yu.N. Obukhov, D. Puetzfeld, On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B. Phys. Lett. A 377, 1775–1781 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Yu.N. Obukhov, D. Puetzfeld, Multipolar test body equations of motion in generalized gravity theories, in Fundamental Theories of Physics, vol. 179 (Springer, Cham, 2015), pp. 67–119

    MATH  Google Scholar 

  136. F.W. Hehl, How does one measure torsion of space-time? Phys. Lett. A 36, 225–226 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  137. W. Adamowicz, A. Trautman, The principle of equivalence for spin. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 23, 339–342 (1975)

    Google Scholar 

  138. J. Audretsch, C. Lämmerzahl, Neutron interference: general theory of the influence of gravity, inertia and space-time torsion. J. Phys. A: Math. Gen. 16, 2457–2477 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  139. H. Rumpf, Quasiclassical limit of the Dirac equation and the equivalence principle in the Riemann-Cartan geometry, in Cosmology and Gravitation: Spin, Torsion, Rotation and Supergravity, ed. by P.G. Bergmann, V. de Sabbata (Plenum, New York, 1980), pp. 93–104

    Chapter  Google Scholar 

  140. J. Audretsch, Dirac electron in space-times with torsion. Spinor propagation, spin precession, and nongeodesic orbit. Phys. Rev. D 24, 1470–1477 (1981). Erratum: Phys. Rev. D 25, 605 (1982)

    Google Scholar 

  141. C. Lämmerzahl, Constraints on space-time torsion from Hughes-Drever experiments. Phys. Lett. A 228, 223–231 (1997)

    Article  ADS  Google Scholar 

  142. W.-T. Ni, Searches for the role of spin and polarization in gravity. Rep. Prog. Phys. 73, 056901 (2010)

    Article  ADS  Google Scholar 

  143. V.A. Kostelecký, R. Russell, J.D. Tasson, Constraints on torsion from bounds on Lorentz violation. Phys. Rev. Lett. 100, 111102 (2008)

    Article  ADS  Google Scholar 

  144. V.A. Kostelecký, Z. Li, Searches for beyond-Riemann gravity. Phys. Rev. D 104, 044054 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  145. R. Lehnert, W.M. Snow, H. Yan, A first experimental limit on in-matter torsion from neutron spin rotation in liquid \({ }^4\)He. Phys. Lett. B 730, 353–356 (2014). Corrigendum: Phys. Lett. B 744, 415 (2015)

    Google Scholar 

  146. A.N. Ivanov, W.M. Snow, Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion. Phys. Lett. B 764, 186–189 (2017)

    Article  ADS  Google Scholar 

  147. A.N. Ivanov, M. Wellenzohn, H. Abele, Quantum gravitational states of ultracold neutrons as a tool for probing of beyond-Riemann gravity. Phys. Lett. B 822, 136640 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  148. Yu.N. Obukhov, A.J. Silenko, O.V. Teryaev, Spin-torsion coupling and gravitational moments of Dirac fermions: theory and experimental bounds. Phys. Rev. D 90, 124068 (2014)

    Article  ADS  Google Scholar 

  149. M.I. Trukhanova, Yu.N. Obukhov, Quantum hydrodynamics of spinning particles in electromagnetic and torsion fields. Universe 7(12), 498 (2021)

    Google Scholar 

Download references

Acknowledgements

I am grateful to Friedrich Hehl for the careful reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Obukhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obukhov, Y.N. (2023). Poincaré Gauge Gravity Primer. In: Pfeifer, C., Lämmerzahl, C. (eds) Modified and Quantum Gravity. Lecture Notes in Physics, vol 1017. Springer, Cham. https://doi.org/10.1007/978-3-031-31520-6_3

Download citation

Publish with us

Policies and ethics