Skip to main content

Deformed Relativistic Symmetry Principles

  • Chapter
  • First Online:
Modified and Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 1017))

Abstract

We review the main features of models where relativistic symmetries are deformed at the Planck scale. We cover the motivations, links to other quantum gravity approaches, describe in some detail the most studied theoretical frameworks, including Hopf algebras, relative locality, and other scenarios with deformed momentum space geometry, discuss possible phenomenological consequences, and point out current open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This formula is to be understood as indicating the lowest-order correction to the standard special-relativistic expression in powers of the particle’s energy over the Planck energy, where the order is given by the positive integer n and \(\eta \) is a dimensionless parameter indicating the strength of the effect at the Planck scale. In general, formulas considering all-order corrections go beyond this simple power-law expression, see e.g. Sect. 2.3.3.

  2. 2.

    While in special relativity c is the maximum allowed speed, in DSR it is to be understood as the speed of low-energy massless particles. And the Planck energy is a relativistic invariant, but is not necessarily the maximum allowed energy. It might be the case in some specific models, but it is not true in general.

  3. 3.

    From now on we set \(c=1\).

  4. 4.

    One might also consider deformations of the other relativistic symmetries, but here we will only focus on boosts for simplicity.

  5. 5.

    In the following we will sometimes use a simplified notation omitting the explicit indication of the four-vector index \(\mu \).

  6. 6.

    By definition, elements of the dual of a Hilbert space \(\mathcal {H}\) are continuous linear maps from \(\mathcal {H}\) to \(\mathbb {C}\). Given the inner product \(\langle \mathbf {k}'|\mathbf {k}\rangle \) on \(\mathcal {H}\), it is evident that bra \(\langle \mathbf {k}| \) is an element of the dual space.

  7. 7.

    As we will explain in the following section, in some approaches to DSR based purely on the geometry of momentum space one assumes to be in a “semiclassical” regime of quantum gravity, such that the Planck constant \(\hbar \) and the Newton constant G vanish, but their ratio is fixed and finite. In this regime, one can build an energy scale \(E_P\) but not a length scale \(L_P\to 0\). In the context of Hopf algebra and non-commutative geometry, this is not the regime that is considered, since one needs a constant with dimensions of length to govern space-time noncommutativity as in (2.34).

  8. 8.

    We adopt a semiclassical approximation, so that symmetry generators act on the momentum space coordinates via Poisson brackets. The properties of the generators of the Hopf algebra are inherited by the Poisson brackets with the convention that, if \([G, f(P_{\mu })]= i h(P_{\mu })\), then \(\{G,f(p_{\mu })\} = h(p_{\mu })\), for any generator G of the Hopf algebra. The functions f, h, take as argument the translation generators \(P_{\mu }\) in the first case, and the momentum space coordinates \(p_{\mu }\) in the second one. This approximation is justified in the “semiclassical” limit we mentioned in the previous footnote and further described in Sect. 2.4.

  9. 9.

    A similar feature as the one we are discussing here for boosts exists for rotation transformations, see [44].

  10. 10.

    A more general expression applies when considering finite transformations [44]; however, here we only discuss the first order in \(\xi \).

  11. 11.

    Here we are using Poisson brackets instead of commutators because we are taking the semiclassical limit which turns a Hops algebra into a Poisson-Lie algebra.

  12. 12.

    This is a completely analogous construction to the one of general relativity where momentum space is the cotangent space of the space-time manifold at a point in spacetime.

  13. 13.

    See [89] for alternative, but physically equivalent, prescriptions.

  14. 14.

    This result was recently rederived using a line element in phase space for a multi-particle system in [91].

  15. 15.

    Note that in the previous section the squared distance was identified with the squared of the distance in momentum space, but any function of the Casimir will be also a Casimir.

  16. 16.

    Note that the metric \(g_{\mu \nu }\) is the inverse of \(g^{\mu \nu }\).

  17. 17.

    We have reabsorbed the coefficient \(c_1\) in the scale \(\kappa \).

  18. 18.

    This is the de Sitter metric written in the comoving coordinate system used in Refs. [44, 92].

  19. 19.

    Of course one might reach different conclusions concerning time shift when using different bases of the \(\kappa \)-Poincaré algebra. For example, using the the classical basis of \(\kappa \)-Poincaré, there could be an absence of time shifts for massless particles with different energies [119]. Within the relative locality framework this can be understood in terms of the non-invariance of physical predictions under momentum space diffeomorphisms [120]. Moreover, depending on the effective scheme used for studying this effect, different time delay formulas are obtained, and may not lead to a time delay [119, 121,122,123].

  20. 20.

    Remember that we set the low-energy particle velocity \(c=1\).

  21. 21.

    The result of [64] was obtaining starting from a deformation of the relativistic transformations in de Sitter spacetime, which is maximally symmetric, and then deducing the time shift in FRW via a slicing procedure, first devised in [68].

  22. 22.

    As we mentioned in the previous subsection, even propagation effects might allow to distinguish between the two frameworks, since there could be a different dependence on the redshift of the source.

  23. 23.

    We write all formulas up to the first order in \(\frac {\eta }{E_P}\). For ultra-relativistic electrons and positrons one can consider \(m_e \frac {\eta }{E_P}\simeq 0\).

References

  1. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002). https://doi.org/10.1142/S0218271802001330

    Article  ADS  Google Scholar 

  2. G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001). https://doi.org/10.1016/S0370-2693(01)00506-8

    Article  ADS  Google Scholar 

  3. G. Amelino-Camelia, J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Nature 393, 763 (1998). https://doi.org/10.1038/31647

    Article  ADS  Google Scholar 

  4. R. Gambini, J. Pullin, Phys. Rev. D 59, 124021 (1999). https://doi.org/10.1103/PhysRevD.59.124021

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Alfaro, H.A. Morales-Tecotl, L.F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000). https://doi.org/10.1103/PhysRevLett.84.2318

    Article  ADS  Google Scholar 

  6. B.E. Schaefer, Phys. Rev. Lett. 82, 4964 (1999). https://doi.org/10.1103/PhysRevLett.82.4964

    Article  ADS  Google Scholar 

  7. S.D. Biller et al., Phys. Rev. Lett. 83, 2108 (1999). https://doi.org/10.1103/PhysRevLett.83.2108

    Article  ADS  Google Scholar 

  8. R. Aloisio, P. Blasi, P.L. Ghia, A.F. Grillo, Phys. Rev. D62, 053010 (2000). https://doi.org/10.1103/PhysRevD.62.053010

    ADS  Google Scholar 

  9. G. Amelino-Camelia, T. Piran, Phys. Rev. D 64, 036005 (2001). https://doi.org/10.1103/PhysRevD.64.036005

    Article  ADS  Google Scholar 

  10. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 1643 (2002). https://doi.org/10.1142/S021827180200302X

    Article  ADS  Google Scholar 

  11. G. Amelino-Camelia, Nature 418, 34 (2002). https://doi.org/10.1038/418034a

    Article  ADS  Google Scholar 

  12. G. Amelino-Camelia, Phys. Rev. D 85, 084034 (2012). https://doi.org/10.1103/PhysRevD.85.084034

    Article  ADS  Google Scholar 

  13. A. Ballesteros, G. Gubitosi, F.J. Herranz, Class. Quant. Grav. 37(19), 195021 (2020). https://doi.org/10.1088/1361-6382/aba668

    Article  ADS  Google Scholar 

  14. A. Ballesteros, G. Gubitosi, I. Gutierrez-Sagredo, F.J. Herranz, Phys. Lett. B 805, 135461 (2020). https://doi.org/10.1016/j.physletb.2020.135461

    Article  MathSciNet  Google Scholar 

  15. H.J. Matschull, M. Welling, Class. Quant. Grav. 15, 2981 (1998). https://doi.org/10.1088/0264-9381/15/10/008

    Article  ADS  Google Scholar 

  16. F.A. Bais, N.M. Muller, B.J. Schroers, Nucl. Phys. B 640, 3 (2002). https://doi.org/10.1016/S0550-3213(02)00572-2

    Article  ADS  Google Scholar 

  17. C. Meusburger, B.J. Schroers, Class. Quant. Grav. 20, 2193 (2003). https://doi.org/10.1088/0264-9381/20/11/318

    Article  ADS  Google Scholar 

  18. G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class. Quant. Grav. 21, 3095 (2004). https://doi.org/10.1088/0264-9381/21/13/002

    Article  ADS  Google Scholar 

  19. L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 69, 044001 (2004). https://doi.org/10.1103/PhysRevD.69.044001

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Freidel, E.R. Livine, Phys. Rev. Lett. 96, 221301 (2006). https://doi.org/10.1103/PhysRevLett.96.221301

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Amelino-Camelia, M. Arzano, S. Bianco, R.J. Buonocore, Class. Quant. Grav. 30, 065012 (2013). https://doi.org/10.1088/0264-9381/30/6/065012

    Article  ADS  Google Scholar 

  22. G. Rosati, Phys. Rev. D 96(6), 066027 (2017). https://doi.org/10.1103/PhysRevD.96.066027

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Bojowald, G.M. Paily, Phys. Rev. D 87(4), 044044 (2013). https://doi.org/10.1103/PhysRevD.87.044044

    Article  ADS  Google Scholar 

  24. J. Mielczarek, EPL 108(4), 40003 (2014). https://doi.org/10.1209/0295-5075/108/40003

    Article  ADS  Google Scholar 

  25. G. Amelino-Camelia, M.M. da Silva, M. Ronco, L. Cesarini, O.M. Lecian, Phys. Rev. D 95(2), 024028 (2017). https://doi.org/10.1103/PhysRevD.95.024028

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Cianfrani, J. Kowalski-Glikman, D. Pranzetti, G. Rosati, Phys. Rev. D 94(8), 084044 (2016). https://doi.org/10.1103/PhysRevD.94.084044

    Article  ADS  MathSciNet  Google Scholar 

  27. L. Smolin, Nucl. Phys. B 742, 142 (2006). https://doi.org/10.1016/j.nuclphysb.2006.02.017

    Article  ADS  Google Scholar 

  28. G. Amelino-Camelia, M. Arzano, M.M. Da Silva, D.H. Orozco-Borunda, Phys. Lett. B 775, 168 (2017). https://doi.org/10.1016/j.physletb.2017.10.071

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Majid, Lect. Notes Phys. 541, 227 (2000)

    Article  ADS  Google Scholar 

  30. G. Amelino-Camelia, S. Majid, Int. J. Mod. Phys. A 15, 4301 (2000). https://doi.org/10.1142/S0217751X00002777

    ADS  Google Scholar 

  31. G. Amelino-Camelia, S. Majid, Int. J. Mod. Phys. A 15, 4301 (2000). https://doi.org/10.1142/S0217751X00002777

    ADS  Google Scholar 

  32. N.R. Bruno, G. Amelino-Camelia, J. Kowalski-Glikman, Phys. Lett. B 522, 133 (2001). https://doi.org/10.1016/S0370-2693(01)01264-3

    Article  ADS  Google Scholar 

  33. J. Kowalski-Glikman, S. Nowak, Int. J. Mod. Phys. D 12, 299 (2003). https://doi.org/10.1142/S0218271803003050

    Article  ADS  Google Scholar 

  34. J. Kowalski-Glikman, S. Nowak, Int. J. Mod. Phys. D12, 299 (2003). https://doi.org/10.1142/S0218271803003050

    Article  ADS  Google Scholar 

  35. A. Agostini, G. Amelino-Camelia, F. D’Andrea, Int. J. Mod. Phys. A 19, 5187 (2004). https://doi.org/10.1142/S0217751X04020919

    Article  ADS  Google Scholar 

  36. G. Amelino-Camelia, F. D’Andrea, G. Mandanici, J. Cosmol. Astropart. Phys. 09, 006 (2003). https://doi.org/10.1088/1475-7516/2003/09/006

    Article  ADS  Google Scholar 

  37. A. Agostini, G. Amelino-Camelia, M. Arzano, A. Marciano, R.A. Tacchi, Mod. Phys. Lett. A 22, 1779 (2007). https://doi.org/10.1142/S0217732307024280

    Article  ADS  Google Scholar 

  38. G. Amelino-Camelia, G. Gubitosi, A. Marciano, P. Martinetti, F. Mercati, Phys. Lett. B 671, 298 (2009). https://doi.org/10.1016/j.physletb.2008.12.032

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Amelino-Camelia, F. Briscese, G. Gubitosi, A. Marciano, P. Martinetti, F. Mercati, Phys. Rev. D 78, 025005 (2008). https://doi.org/10.1103/PhysRevD.78.025005

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Amelino-Camelia, G. Gubitosi, A. Marciano, P. Martinetti, F. Mercati, D. Pranzetti, R.A. Tacchi, Prog. Theor. Phys. Suppl. 171, 65 (2007). https://doi.org/10.1143/PTPS.171.65

    Article  ADS  Google Scholar 

  41. J.M. Carmona, J.L. Cortes, F. Mercati, Phys. Rev. D 86, 084032 (2012). https://doi.org/10.1103/PhysRevD.86.084032

    Article  ADS  Google Scholar 

  42. G. Amelino-Camelia, G. Gubitosi, G. Palmisano, Int. J. Mod. Phys. D25(02), 1650027 (2016). https://doi.org/10.1142/S0218271816500279

    Article  ADS  Google Scholar 

  43. J.M. Carmona, J.L. Cortes, J.J. Relancio, Phys. Rev. D 94(8), 084008 (2016). https://doi.org/10.1103/PhysRevD.94.084008

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Gubitosi, F. Mercati, Class. Quant. Grav. 30, 145002 (2013). https://doi.org/10.1088/0264-9381/30/14/145002

    Article  ADS  Google Scholar 

  45. G. Gubitosi, S. Heefer, Phys. Rev. D99(8), 086019 (2019). https://doi.org/10.1103/PhysRevD.99.086019

    ADS  Google Scholar 

  46. G. Amelino-Camelia, Symmetry 2, 230 (2010). https://doi.org/10.3390/sym2010230

    Article  ADS  Google Scholar 

  47. J. Lukierski, H. Ruegg, A. Nowicki, V.N. Tolstoi, Phys. Lett. B264, 331 (1991). https://doi.org/10.1016/0370-2693(91)90358-W

    Article  ADS  Google Scholar 

  48. J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B293, 344 (1992). https://doi.org/10.1016/0370-2693(92)90894-A

    Article  ADS  Google Scholar 

  49. S. Majid, H. Ruegg, Phys. Lett. B 334, 348 (1994). https://doi.org/10.1016/0370-2693(94)90699-8

    Article  ADS  MathSciNet  Google Scholar 

  50. J. Lukierski, H. Ruegg, W.J. Zakrzewski, Ann. Phys. 243, 90 (1995). https://doi.org/10.1006/aphy.1995.1092

    Article  ADS  Google Scholar 

  51. G. Amelino-Camelia, J. Lukierski, A. Nowicki, Phys. Atom. Nucl. 61, 1811 (1998)

    ADS  Google Scholar 

  52. M. Arzano, J. Kowalski-Glikman, Deformations of Spacetime Symmetries: Gravity, Group-Valued Momenta, and Non-commutative Fields. Lecture Notes in Physics, vol. 986 (2021). https://doi.org/10.1007/978-3-662-63097-6

  53. R. Geroch, Mathematical Physics. Chicago Lectures in Physics (The University of Chicago Press, 1985)

    Google Scholar 

  54. S. Majid, H. Ruegg, Phys. Lett. B334, 348 (1994). https://doi.org/10.1016/0370-2693(94)90699-8

    Article  ADS  Google Scholar 

  55. M. Arzano, J. Kowalski-Glikman, A group theoretic description of the \(\kappa \)-Poincaré Hopf algebra, Phys. Lett. B 835, 137535 (2022). https://doi.org/10.1016/j.physletb.2022.137535

  56. A. Borowiec, A. Pachol, J. Phys. A43, 045203 (2010). https://doi.org/10.1088/1751-8113/43/4/045203

    ADS  Google Scholar 

  57. M. Arzano, T. Trzesniewski, Phys. Rev. D 89(12), 124024 (2014). https://doi.org/10.1103/PhysRevD.89.124024

    Article  ADS  Google Scholar 

  58. H. Ruegg, V.N. Tolstoi, Lett. Math. Phys. 32, 85 (1994). https://doi.org/10.1007/BF00739419

    Article  ADS  MathSciNet  Google Scholar 

  59. P. Kosinski, J. Lukierski, P. Maslanka, Czech. J. Phys. 50, 1283 (2000). https://doi.org/10.1023/A:1022821310096

    Article  ADS  Google Scholar 

  60. C. Guedes, D. Oriti, M. Raasakka, J. Math. Phys. 54, 083508 (2013). https://doi.org/10.1063/1.4818638

    Article  ADS  MathSciNet  Google Scholar 

  61. G. Amelino-Camelia, M. Arzano, J. Kowalski-Glikman, G. Rosati, G. Trevisan, Class. Quant. Grav. 29, 075007 (2012). https://doi.org/10.1088/0264-9381/29/7/075007

    Article  ADS  Google Scholar 

  62. J. Kowalski-Glikman, S. Nowak, Class. Quant. Grav. 20, 4799 (2003). https://doi.org/10.1088/0264-9381/20/22/006

    Article  ADS  Google Scholar 

  63. G. Amelino-Camelia, Phys. Rev. D85, 084034 (2012). https://doi.org/10.1103/PhysRevD.85.084034

    ADS  Google Scholar 

  64. G. Rosati, G. Amelino-Camelia, A. Marciano, M. Matassa, Phys. Rev. D92(12), 124042 (2015). https://doi.org/10.1103/PhysRevD.92.124042

    ADS  Google Scholar 

  65. G. Amelino-Camelia, A. Marciano, M. Matassa, G. Rosati, Phys. Rev. D 86, 124035 (2012). https://doi.org/10.1103/PhysRevD.86.124035

    Article  ADS  Google Scholar 

  66. J.J. Relancio, S. Liberati, Phys. Rev. D 101(6), 064062 (2020). https://doi.org/10.1103/PhysRevD.101.064062

    Article  ADS  MathSciNet  Google Scholar 

  67. J.J. Relancio, S. Liberati, Class. Quant. Grav. 38(13), 135028 (2021). https://doi.org/10.1088/1361-6382/ac05d7

    Article  Google Scholar 

  68. A. Marciano, G. Amelino-Camelia, N.R. Bruno, G. Gubitosi, G. Mandanici, A. Melchiorri, J. Cosmol. Astropart. Phys. 06, 030 (2010). https://doi.org/10.1088/1475-7516/2010/06/030

    Article  ADS  Google Scholar 

  69. A. Ballesteros, F.J. Herranz, M.A.D. Olmo, M. Santander, J. Phys. A: Math. Gen. 27(4), 1283 (1994). https://doi.org/10.1088/0305-4470/27/4/021. https://doi.org/10.1088/0305-4470/27/4/021

  70. A. Ballesteros, F.J. Herranz, F. Musso, P. Naranjo, Phys. Lett. B 766, 205 (2017). https://doi.org/10.1016/j.physletb.2017.01.020

    Article  ADS  Google Scholar 

  71. A. Ballesteros, I. Gutierrez-Sagredo, F.J. Herranz, Phys. Lett. B 796, 93 (2019). https://doi.org/10.1016/j.physletb.2019.07.038

    Article  ADS  MathSciNet  Google Scholar 

  72. C. Pfeifer, J.J. Relancio, Eur. Phys. J. C 82(2), 150 (2022). https://doi.org/10.1140/epjc/s10052-022-10066-w

    Article  ADS  Google Scholar 

  73. L. Barcaroli, G. Gubitosi, Phys. Rev. D 93(12), 124063 (2016). https://doi.org/10.1103/PhysRevD.93.124063

    Article  ADS  MathSciNet  Google Scholar 

  74. P. Aschieri, A. Borowiec, A. Pacho, J. Cosmol. Astropart. Phys. 04, 025 (2021). https://doi.org/10.1088/1475-7516/2021/04/025

    Article  ADS  Google Scholar 

  75. A. Ballesteros, G. Gubitosi, F. Mercati, Symmetry 13(11), 2099 (2021). https://doi.org/10.3390/sym13112099

    Article  ADS  Google Scholar 

  76. A. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo, F.J. Herranz, Phys. Rev. D97(10), 106024 (2018). https://doi.org/10.1103/PhysRevD.97.106024

    ADS  Google Scholar 

  77. A. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo, F.J. Herranz, Phys. Lett. B773, 47 (2017). https://doi.org/10.1016/j.physletb.2017.08.008

    Article  ADS  Google Scholar 

  78. I. Gutierrez-Sagredo, A. Ballesteros, G. Gubitosi, F.J. Herranz Quantum groups, non-commutative Lorentzian spacetimes and curved momentum spaces, In Spacetime Physics 1907–2017. C. Duston and M. Holman (Eds). Minkowski Institute Press, Montreal (2019), pp. 261–290

    Google Scholar 

  79. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 84, 084010 (2011). https://doi.org/10.1103/PhysRevD.84.084010

    Article  ADS  Google Scholar 

  80. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Gen. Rel. Grav. 43, 2547 (2011). https://doi.org/10.1142/S0218271811020743

    Article  ADS  Google Scholar 

  81. S. Hossenfelder, Phys. Rev. Lett. 104, 140402 (2010). https://doi.org/10.1103/PhysRevLett.104.140402

    Article  ADS  Google Scholar 

  82. L. Smolin, Gen. Rel. Grav. 43, 3671 (2011). https://doi.org/10.1007/s10714-011-1235-1

    Article  ADS  Google Scholar 

  83. G. Amelino-Camelia, M. Matassa, F. Mercati, G. Rosati, Phys. Rev. Lett. 106, 071301 (2011). https://doi.org/10.1103/PhysRevLett.106.071301

    Article  ADS  Google Scholar 

  84. U. Jacob, F. Mercati, G. Amelino-Camelia, T. Piran, Phys. Rev. D 82, 084021 (2010). https://doi.org/10.1103/PhysRevD.82.084021

    Article  ADS  Google Scholar 

  85. G. Amelino-Camelia, N. Loret, G. Rosati, Phys. Lett. B 700, 150 (2011). https://doi.org/10.1016/j.physletb.2011.04.054

    Article  ADS  MathSciNet  Google Scholar 

  86. M. Arzano, G. Gubitosi, J.a. Magueijo, G. Amelino-Camelia, Phys. Rev. D 92(2), 024028 (2015). https://doi.org/10.1103/PhysRevD.92.024028

  87. I.P. Lobo, G. Palmisano, Int. J. Mod. Phys. Conf. Ser. 41, 1660126 (2016). https://doi.org/10.1142/S2010194516601265

    Article  Google Scholar 

  88. L. Freidel, L. Smolin, Gamma ray burst delay times probe the geometry of momentum space, (2011) https://arxiv:hep-th/arXiv:1103.5626

    Google Scholar 

  89. G. Amelino-Camelia, M. Arzano, J. Kowalski-Glikman, G. Rosati, G. Trevisan, Class. Quant. Grav. 29, 075007 (2012). https://doi.org/10.1088/0264-9381/29/7/075007

    Article  ADS  Google Scholar 

  90. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D84, 084010 (2011). https://doi.org/10.1103/PhysRevD.84.084010

    ADS  Google Scholar 

  91. J.J. Relancio, Phys. Rev. D 104(2), 024017 (2021). https://doi.org/10.1103/PhysRevD.104.024017

    Article  ADS  MathSciNet  Google Scholar 

  92. J.M. Carmona, J.L. Cortés, J.J. Relancio, Phys. Rev. D100(10), 104031 (2019). https://doi.org/10.1103/PhysRevD.100.104031

    ADS  Google Scholar 

  93. S. Weinberg, Gravitation and Cosmology (Wiley , New York, 1972). http://www-spires.fnal.gov/spires/find/books/www?cl=QC6.W431

    Google Scholar 

  94. S.L. Dubovsky, S.M. Sibiryakov, Phys. Lett. B638, 509 (2006). https://doi.org/10.1016/j.physletb.2006.05.074

    Article  ADS  Google Scholar 

  95. P. Finsler. Über Kurven und Flächen in allgemeinen Räumen. Göttingen, Zürich: O. Füssli, 120 S. \(8^{\circ }\) (1918)

    Google Scholar 

  96. R. Miron, D. Hrimiuc, H. Shimada, S. Sabau, The Geometry of Hamilton and Lagrange Spaces. Fundamental Theories of Physics (Springer, 2001). https://books.google.es/books?id=l3JNMzL14SAC

  97. F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D75, 064015 (2007). https://doi.org/10.1103/PhysRevD.75.064015

    ADS  Google Scholar 

  98. G. Amelino-Camelia, L. Barcaroli, G. Gubitosi, S. Liberati, N. Loret, Phys. Rev. D 90(12), 125030 (2014). https://doi.org/10.1103/PhysRevD.90.125030

    Article  ADS  Google Scholar 

  99. M. Letizia, S. Liberati, Phys. Rev. D95(4), 046007 (2017). https://doi.org/10.1103/PhysRevD.95.046007

    ADS  Google Scholar 

  100. L. Barcaroli, L.K. Brunkhorst, G. Gubitosi, N. Loret, C. Pfeifer, Phys. Rev. D 95(2), 024036 (2017). https://doi.org/10.1103/PhysRevD.95.024036

    Article  ADS  MathSciNet  Google Scholar 

  101. L. Barcaroli, L.K. Brunkhorst, G. Gubitosi, N. Loret, C. Pfeifer, Phys. Rev. D 92(8), 084053 (2015). https://doi.org/10.1103/PhysRevD.92.084053

    Article  ADS  MathSciNet  Google Scholar 

  102. L. Barcaroli, L.K. Brunkhorst, G. Gubitosi, N. Loret, C. Pfeifer, Phys. Rev. D 96(8), 084010 (2017). https://doi.org/10.1103/PhysRevD.96.084010

    Article  ADS  MathSciNet  Google Scholar 

  103. S.S. Chern, W.H. Chen, K.S. Lam, Lectures on Differential Geometry (World Scientific, Singapore, 1999). See Eqs. (1.30) and (1.31) of Chapter 6

    Google Scholar 

  104. J. Kowalski-Glikman, S. Nowak, Phys. Lett. B539, 126 (2002). https://doi.org/10.1016/S0370-2693(02)02063-4

    Article  ADS  Google Scholar 

  105. M.V. Battisti, S. Meljanac, Phys. Rev. D 82, 024028 (2010). https://doi.org/10.1103/PhysRevD.82.024028

    Article  ADS  MathSciNet  Google Scholar 

  106. S. Meljanac, D. Meljanac, A. Samsarov, M. Stojic (2009) [arXiv:0909.1706];

    Google Scholar 

  107. J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, E.K.G. Sarkisyan, Astropart. Phys. 25, 402 (2006). https://doi.org/10.1016/j.astropartphys.2007.12.003 [Erratum: Astropart. Phys. 29, 158–159 (2008)]

    Article  ADS  Google Scholar 

  108. D. Mattingly, Living Rev. Rel. 8, 5 (2005)

    Article  Google Scholar 

  109. G. Amelino-Camelia, Living Rev. Rel. 16, 5 (2013). https://doi.org/10.12942/lrr-2013-5

    Article  Google Scholar 

  110. A. Addazi et al., Prog. Part. Nucl. Phys. 125, 103948 (2022). https://doi.org/10.1016/j.ppnp.2022.103948

    Article  Google Scholar 

  111. G. Amelino-Camelia, L. Barcaroli, N. Loret, Int. J. Theor. Phys. 51, 3359 (2012). https://doi.org/10.1007/s10773-012-1216-5

    Article  Google Scholar 

  112. G. Amelino-Camelia, L. Barcaroli, S. Bianco, L. Pensato, Adv. High Energy Phys. 2017, 6075920 (2017). https://doi.org/10.1155/2017/6075920

    Article  Google Scholar 

  113. G. Amelino-Camelia, L. Barcaroli, G. D’Amico, N. Loret, G. Rosati, Int. J. Mod. Phys. D 26(08), 1750076 (2017). https://doi.org/10.1142/S0218271817500766

    Article  ADS  Google Scholar 

  114. P. Kosinski, P. Maslanka, Phys. Rev. D 68, 067702 (2003). https://doi.org/10.1103/PhysRevD.68.067702

    Article  ADS  MathSciNet  Google Scholar 

  115. S. Mignemi, Phys. Lett. A 316, 173 (2003). https://doi.org/10.1016/S0375-9601(03)01176-9

    Article  ADS  MathSciNet  Google Scholar 

  116. M. Daszkiewicz, K. Imilkowska, J. Kowalski-Glikman, Phys. Lett. A 323, 345 (2004). https://doi.org/10.1016/j.physleta.2004.02.046

    Article  ADS  MathSciNet  Google Scholar 

  117. J. Kowalski-Glikman, in 10th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG X MMIII) (2003), pp. 1169–1182

    Google Scholar 

  118. G. Rosati, N. Loret, G. Amelino-Camelia, J. Phys. Conf. Ser. 343, 012105 (2012). https://doi.org/10.1088/1742-6596/343/1/012105

    Article  Google Scholar 

  119. J.M. Carmona, J.L. Cortes, J.J. Relancio, Class. Quant. Grav. 35(2), 025014 (2018). https://doi.org/10.1088/1361-6382/aa9ef8

    Article  ADS  Google Scholar 

  120. G. Amelino-Camelia, S. Bianco, G. Rosati, Phys. Rev. D 101(2), 026018 (2020). https://doi.org/10.1103/PhysRevD.101.026018

    Article  ADS  MathSciNet  Google Scholar 

  121. J.M. Carmona, J.L. Cortés, J.J. Relancio, Symmetry 10(7), 231 (2018). https://doi.org/10.3390/sym10070231

    Article  ADS  Google Scholar 

  122. J.M. Carmona, J.L. Cortes, J.J. Relancio, Symmetry 11, 1401 (2019). https://doi.org/10.3390/sym11111401

    Article  ADS  Google Scholar 

  123. J. Relancio, S. Liberati, Phys. Rev. D 102(10), 104025 (2020). https://doi.org/10.1103/PhysRevD.102.104025

    Article  ADS  MathSciNet  Google Scholar 

  124. G. Amelino-Camelia, L. Barcaroli, G. Gubitosi, N. Loret, Class. Quant. Grav. 30, 235002 (2013). https://doi.org/10.1088/0264-9381/30/23/235002

    Article  ADS  Google Scholar 

  125. G. Amelino-Camelia, S. Bianco, F. Brighenti, R.J. Buonocore, Phys. Rev. D91(8), 084045 (2015). https://doi.org/10.1103/PhysRevD.91.084045

    ADS  Google Scholar 

  126. U. Jacob, T. Piran, J. Cosmol. Astropart. Phys. 01, 031 (2008). https://doi.org/10.1088/1475-7516/2008/01/031

    Article  ADS  Google Scholar 

  127. G. Amelino-Camelia, G. Rosati, S. Bedić, Phys. Lett. B 820, 136595 (2021). https://doi.org/10.1016/j.physletb.2021.136595

    Article  Google Scholar 

  128. T. Jacobson, S. Liberati, D. Mattingly, Phys. Rev. D 66, 081302 (2002). https://doi.org/10.1103/PhysRevD.66.081302

    Article  ADS  Google Scholar 

  129. G. Amelino-Camelia, Phys. Lett. B 528, 181 (2002). https://doi.org/10.1016/S0370-2693(02)01223-6

    Article  ADS  Google Scholar 

  130. G. Albalate, J.M. Carmona, J.L. Cortés, J.J. Relancio, Symmetry 10, 432 (2018). https://doi.org/10.3390/sym10100432

    Article  ADS  Google Scholar 

  131. J.M. Carmona, J.L. Cortés, J.J. Relancio, Symmetry 13, 1266 (2021). https://doi.org/10.3390/sym13071266

    Article  ADS  Google Scholar 

  132. J.M. Carmona, J.L. Cortés, L. Pereira, J.J. Relancio, Symmetry 12(8), 1298 (2020). https://doi.org/10.3390/sym12081298

    Article  ADS  Google Scholar 

  133. J.M. Carmona, J.L. Cortés, J.J. Relancio, M.A. Reyes, A. Vincueria, Eur. Phys. J. Plus 137, 768 (2022). https://10.1140/epjp/s13360-022-02920-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Gubitosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arzano, M., Gubitosi, G., Relancio, J.J. (2023). Deformed Relativistic Symmetry Principles. In: Pfeifer, C., Lämmerzahl, C. (eds) Modified and Quantum Gravity. Lecture Notes in Physics, vol 1017. Springer, Cham. https://doi.org/10.1007/978-3-031-31520-6_2

Download citation

Publish with us

Policies and ethics