Skip to main content

Influence of Endocrine Disruptors on Male Reproductive Tract

  • Chapter
  • First Online:
Testosterone

Abstract

A wide variety of chemical compounds with endocrine disruptor (EDC) activity have been recognized for environmental control agencies worldwide, including among them pesticides, pollutants and substances used in the production of plastics. Biomonitoring studies have identified these compounds in adults, children, pregnant women and fetuses. EDCs are contributing to the increased prevalence of chronic diseases, including those related to reproductive system. Initially, it was assumed that EDCs exert their adverse effects by binding to hormone receptors and transcription factors, but it is currently known that they may also alter the expression of enzymes involved in the steroid synthesis and/or catabolism or cause epigenetic changes. The true impact of endocrine disruptors on human health is difficult to assess because specific end points may be differentially affected at different ages. Humans are exposed to at least hundreds of environmental chemicals and a major limitation of epidemiological studies is that usually they measured the human exposure to a single EDC. The EDCs are an international problem and the population should be educated to avoid EDC exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gore A, Chappell V, Fenton S, Flaws J, Nadal A, Prins G, Toppari J, Zoeller R. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:1–150.

    Article  Google Scholar 

  2. Chianese R, Troisi J, Richards S, Scafuro M, Fasano S, Guida M, Pierantoni R, Meccariello R. Bisphenol A in reproduction: epigenetic effects. Curr Med Chem. 2018;25(6):748–70.

    Article  CAS  PubMed  Google Scholar 

  3. Zoeller RT. Endocrine disruptors: do family lines carry an epigenetic record of previous generations’ exposures? Endocrinology. 2006;147(12):5513–4.

    Article  CAS  PubMed  Google Scholar 

  4. Maffini MV, Rubin BS, Sonnenschein C, Soto AM. Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol. 2006;254:179–86.

    Article  PubMed  Google Scholar 

  5. Michałowicz J. Bisphenol A–sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014;37(2):738–58.

    Article  PubMed  Google Scholar 

  6. Ziv-Gal A, Craig ZR, Wang W, Flaws JA. Bisphenol A inhibits cultured mouse ovarian follicle growth partially via the aryl hydrocarbon receptor signaling pathway. Reprod Toxicol. 2013;42:58–67.

    Article  CAS  PubMed  Google Scholar 

  7. Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011;127(1–2):27–34.

    Article  CAS  PubMed  Google Scholar 

  8. Iso T, Watanabe T, Iwamoto T, Shimamoto A, Furuichi Y. DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biol Pharm Bull. 2006;29(2):206–10.

    Article  CAS  PubMed  Google Scholar 

  9. Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol. 2007;24(2):178–98.

    Article  CAS  PubMed  Google Scholar 

  10. Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med. 2000;224(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  11. Timms BG, Howdeshell KL, Barton L, Bradley S, Richter CA, Vom Saal FS. Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad Sci U S A. 2005;102(19):7014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vom Saal FS, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, Parmigiani S, Welshons WV. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998;14(1–2):239–60.

    Article  CAS  PubMed  Google Scholar 

  13. Cargnelutti F, Di Nisio A, Pallotti F, Sabovic I, Spaziani M, Tarsitano MG, Paoli D, Foresta C. Effects of endocrine disruptors on fetal testis development, male puberty and transition age. Endocrine. 2021;72(2):358–74.

    Article  CAS  PubMed  Google Scholar 

  14. Ramos JG, Varayoud J, Sonnenschein C, Soto AM, de Toro MM, Luque EH. Prenatal exposure to low doses of bisphenol A alters the periductal stroma and glandular cell function in the rat ventral prostate. Biol Reprod. 2001;65(4):1271–7.

    Article  CAS  PubMed  Google Scholar 

  15. Savchuk I, Söder O, Svechnikov K. Mouse Leydig cells with different androgen production potential are resistant to estrogenic stimuli but responsive to bisphenol A which attenuates testosterone metabolism. PLoS One. 2013;15(8):e71722.

    Article  Google Scholar 

  16. Nanjappa MK, Ahuja M, Dhanasekaran M, Coleman ES, Braden TD, Bartol FF, Bird RC, Wanders D, Judd RL, Akingbemi BT. Bisphenol A regulation of testicular endocrine function in male rats is affected by diet. Toxicol Lett. 2014;225(3):479–87.

    Article  CAS  PubMed  Google Scholar 

  17. Chouhan S, Yadav SK, Prakash J, Westfall S, Ghosh A, Agarwal NK, Singh SP. Increase in the expression of inducible nitric oxide synthase on exposure to bisphenol A: a possible cause for decline in steroidogenesis in male mice. Environ Toxicol Pharmacol. 2015;39(1):405–16.

    Article  CAS  PubMed  Google Scholar 

  18. Maamar MB, Lesné L, Desdoits-Lethimonier C, Coiffec I, Lassurguère J, Lavoué V, Deceuninck Y, Antignac J-P, Le Bizec B, Perdu E. An investigation of the endocrine-disruptive effects of bisphenol A in human and rat fetal testes. PLoS One. 2015;10(2):e0117226.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Abraham A, Chakraborty P. A review on sources and health impacts of bisphenol A. Rev Environ Health. 2020;35(2):201–10.

    Article  CAS  PubMed  Google Scholar 

  20. Siracusa JS, Yin L, Measel E, Liang S, Yu X. Effects of bisphenol A and its analogs on reproductive health: a mini review. Reprod Toxicol. 2018;79:96–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mably TA, Moore RW, Peterson RE. In utero and lactational exposure of male rats to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin: I. effects on androgenic status. Toxicol Appl Pharmacol. 1992;114(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  22. Bruner-Tran KL, Gnecco J, Ding T, Glore DR, Pensabene V, Osteen KG. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: translating lessons from murine models. Reprod Toxicol. 2017;68:59–71.

    Article  CAS  PubMed  Google Scholar 

  23. Malisch R, Kotz A. Dioxins and PCBs in feed and food-review from European perspective. Sci Total Environ. 2014;1(491–492):2–10.

    Article  Google Scholar 

  24. Ruder AM, Hein MJ, Hopf NB, Waters MA. Mortality among 24,865 workers exposed to polychlorinated biphenyls (PCBs) in three electrical capacitor manufacturing plants: a ten-year update. Int J Hyg Environ Health. 2014;217(2):176–87.

    Article  CAS  PubMed  Google Scholar 

  25. Khan IA, Thomas P. Disruption of neuroendocrine control of luteinizing hormone secretion by Aroclor 1254 involves inhibition of hypothalamic tryptophan hydroxylase activity. Biol Reprod. 2001;64(3):955–64.

    Article  CAS  PubMed  Google Scholar 

  26. Dickerson SM, Cunningham SL, Gore AC. Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus. Toxicol Appl Pharmacol. 2011;252(1):36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vested A, Giwercman A, Bonde JP, Toft G. Persistent organic pollutants and male reproductive health. Asian J Androl. 2014;16(1):71.

    Article  PubMed  Google Scholar 

  28. Foster P. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006;29(1):140–7.

    Article  CAS  PubMed  Google Scholar 

  29. Joensen UN, Veyrand B, Antignac J-P, Jensen MB, Petersen JH, Marchand P, Skakkebæk NE, Andersson A-M, Le Bizec B, Jørgensen N. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum Reprod. 2013;28(3):599–608.

    Article  CAS  PubMed  Google Scholar 

  30. López-Doval S, Salgado R, Pereiro N, Moyano R, Lafuente A. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. Environ Res. 2014;134:158–68.

    Article  PubMed  Google Scholar 

  31. Sierra-Santoyo A, Hernández M, Albores A, Cebrián ME. DDT increases hepatic testosterone metabolism in rats. Arch Toxicol. 2005;79(1):7–12. https://doi.org/10.1007/s00204-004-0603-y.

    Article  CAS  PubMed  Google Scholar 

  32. Madrigal JM, Sargis RM, Persky V, Turyk ME. Multiple organochlorine pesticide exposures and measures of sex steroid hormones in adult males: cross-sectional findings from the 1999-2004 national health and nutrition examination survey. Int J Hyg Environ Health. 2021;231:113609.

    Article  CAS  PubMed  Google Scholar 

  33. Freire C, Koifman RJ, Sarcinelli PN, Rosa AC, Clapauch R, Koifman S. Association between serum levels of organochlorine pesticides and sex hormones in adults living in a heavily contaminated area in Brazil. Int J Hyg Environ Health. 2014;217(2–3):370–8.

    Article  CAS  PubMed  Google Scholar 

  34. Dalvie MA, Myers JE, Thompson ML, Robins TG, Dyer S, Riebow J, Molekwa J, Jeebhay M, Millar R, Kruger P. The long-term effects of DDT exposure on semen, fertility, and sexual function of malaria vector-control workers in Limpopo Province, South Africa. Environ Res. 2004;96(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ye L, Su ZJ, Ge RS. Inhibitors of testosterone biosynthetic and metabolic activation enzymes. Molecules. 2011;16(12):9983–10001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lv H, et al. Potent inhibition of tributyltin (TBT) and triphenyltin (TPT) against multiple UDP-glucuronosyltransferases (UGT): a new potential mechanism underlying endocrine disrupting actions. Food Chem Toxicol. 2021;149:112039.

    Article  CAS  PubMed  Google Scholar 

  37. Ohno S, Nakajima Y, Nakajin S. Triphenyltin and tributyltin inhibit pig testicular 17β-hydroxysteroid dehydrogenase activity and suppress testicular testosterone biosynthesis. Steroids. 2005;70(9):645–51.

    Article  CAS  PubMed  Google Scholar 

  38. Doering DD, Steckelbroeck S, Doering T, Klingmüller D. Effects of butyltins on human 5α-reductase type 1 and type 2 activity. Steroids. 2002;67(10):859–67.

    Article  CAS  PubMed  Google Scholar 

  39. Janer G, Sternberg R, LeBlanc G, Porte C. Testosterone conjugating activities in invertebrates: are they targets for endocrine disruptors? Aquat Toxicol. 2005;71(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  40. Clement TM, Savenkova MI, Settles M, Anway MD, Skinner MK. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure. Reprod Toxicol. 2010;30(3):353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.

    Article  CAS  PubMed  Google Scholar 

  42. Loreto-Gomez C, Farías P, Moreno-Macías H, Romano-Riquer SP, Riojas-Rodríguez H. Anogenital distance: a longitudinal evaluation of its variants and indices in boys and girls of Sonora, Mexico. Reprod Toxicol. 2017;73:167–74.

    Article  CAS  PubMed  Google Scholar 

  43. Dean A, van den Driesche S, Wang Y, McKinnell C, Macpherson S, Eddie SL, Kinnell H, Hurtado-Gonzalez P, Chambers TJ, Stevenson K, Wolfinger E, Hrabalkova L, Calarrao A, Bayne RA, Hagen CP, Mitchell RT, Anderson RA, Sharpe RM. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences. Sci Rep. 2016;27(6):19789.

    Article  Google Scholar 

  44. Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T. Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol. 2019;93(2):253–72.

    Article  CAS  PubMed  Google Scholar 

  45. Rodprasert W, Toppari J, Virtanen HE. Endocrine disrupting chemicals and reproductive health in boys and men. Front Endocrinol (Lausanne). 2021;7(12):706532.

    Article  Google Scholar 

  46. Sharpe RM. Androgens and the masculinization programming window: human-rodent differences. Biochem Soc Trans. 2020;48(4):1725–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Virtanen HE, Toppari J. Epidemiology and pathogenesis of cryptorchidism. Hum Reprod Update. 2008;14(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  48. Hutson JM, Li R, Southwell BR, Newgreen D, Cousinery M. Regulation of testicular descent. Pediatr Surg Int. 2015;31(4):317–25.

    Article  PubMed  Google Scholar 

  49. Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, Hougaard KS, Høyer BB, Hærvig KK, Petersen SB, Rylander L, Specht IO, Toft G, Bräuner EV. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update. 2016;23(1):104–25.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bay K, Asklund C, Skakkebaek NE, Andersson A-M. Testicular dysgenesis syndrome: possible role of endocrine disrupters. Best Pract Res Clin Endocrinol Metab. 2006;20(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  51. Gaspari L, Paris F, Philibert P, Audran F, Orsini M, Servant N, Maïmoun L, Kalfa N, Sultan C. ‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals? Eur J Endocrinol. 2011;165(4):579–87.

    Article  CAS  PubMed  Google Scholar 

  52. Hauser R, Skakkebaek NE, Hass U, Toppari J, Juul A, Andersson AM, Kortenkamp A, Heindel JJ, Trasande L. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European union. J Clin Endocrinol Metabol. 2015;100(4):1267–77.

    Article  CAS  Google Scholar 

  53. Bakker J. The role of steroid hormones in the sexual differentiation of the human brain. J Neuroendocrinol. 2022;34(2):e13050.

    Article  CAS  PubMed  Google Scholar 

  54. Giovanni SM, Letizia AAM, Chiara M, Vincenzo S, Erika P, Marta S. The male reproductive system and endocrine disruptors. Endocr Metab Immune Disord Drug Targets. 2021;22(7):686–703.

    Google Scholar 

  55. Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L, Chen Z, Herrick RF, Christiani DC, Hauser R. Phthalate exposure and human semen parameters. Epidemiology. 2003;14(3):269–77.

    Article  PubMed  Google Scholar 

  56. Sakai ST, Arsznov BM. Carnivoran brains: effects of sociality on inter-and intraspecific comparisons of regional brain volumes. In: Evolutionary neuroscience. Cambridge, MA: Academic Press; 2020. p. 463–79.

    Chapter  Google Scholar 

  57. Savic I, et al. Role of testosterone and Y chromosome genes for the masculinization of the human brain. Hum Brain Mapp. 2017;38(4):1801–14.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ernst M, et al. Amygdala function in adolescents with congenital adrenal hyperplasia: a model for the study of early steroid abnormalities. Neuropsychologia. 2007;45(9):2104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fernández R, et al. Molecular basis of gender dysphoria: androgen and estrogen receptor interaction. Psychoneuroendocrinology. 2018;98:161–7.

    Article  PubMed  Google Scholar 

  60. Lopez-Rodriguez D, Franssen D, Heger S, Parent AS. Endocrine-disrupting chemicals and their effects on puberty. Best Pract Res Clin Endocrinol Metab. 2021;35(5):101579.

    Article  CAS  PubMed  Google Scholar 

  61. Ge RS, Chen GR, Dong Q, Akingbemi B, Sottas CM, Santos M, Sealfon SC, Bernard DJ, Hardy MP. Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats. J Androl. 2007;28(4):513–20.

    Article  CAS  PubMed  Google Scholar 

  62. Den Hond E, Schoeters G. Endocrine disrupters and human puberty. Int J Androl. 2006;29(1):264–71.

    Article  Google Scholar 

  63. del Rio GI, Marshall T, Tsai P, Shao Y-S, Guo YL. Number of boys born to men exposed to polychlorinated biphenyls. Lancet. 2002;360(9327):143–4.

    Article  Google Scholar 

  64. Mieritz MG, Frederiksen H, Sørensen K, Aksglaede L, Mouritsen A, Hagen CP, Skakkebaek NE, Andersson AM, Juul A. Urinary phthalate excretion in 555 healthy Danish boys with and without pubertal gynaecomastia. Int J Androl. 2012;35(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  65. Jönsson BA, Richthoff J, Rylander L, Giwercman A, Hagmar L. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology. 2005;16(4):487–93.

    Article  PubMed  Google Scholar 

  66. Dallinga JW, Moonen EJ, Dumoulin JC, Evers JL, Geraedts JP, Kleinjans JC. Decreased human semen quality and organochlorine compounds in blood. Hum Reprod. 2002;17(8):1973–9.

    Article  CAS  PubMed  Google Scholar 

  67. Hsu PC, Huang W, Yao WJ, Wu MH, Guo YL, Lambert GH. Sperm changes in men exposed to polychlorinated biphenyls and dibenzofurans. JAMA. 2003;289(22):2943–4.

    Article  CAS  PubMed  Google Scholar 

  68. Mocarelli P, Gerthoux PM, Patterson DG Jr, Milani S, Limonta G, Bertona M, Signorini S, Tramacere P, Colombo L, Crespi C, Brambilla P, Sarto C, Carreri V, Sampson EJ, Turner WE, Needham LL. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect. 2008;116(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  69. Skakkebaek NE, Rajpert-De ME, Jorgensen N, Main KM, Leffers H, Andersson AM, Juul A, Jensen TK, Toppari J. Testicular cancer trends as ‘whistle blowers’ of testicular developmental problems in populations. Int J Androl. 2007;30(4):198–204; discussion 204-205.

    Article  CAS  PubMed  Google Scholar 

  70. Hemminki K, Li X. Cancer risks in Nordic immigrants and their offspring in Sweden. Eur J Cancer. 2002;38(18):2428–34.

    Article  CAS  PubMed  Google Scholar 

  71. Hardell L, van Bavel B, Lindström G, Carlberg M, Dreifaldt AC, Wijkström H, Starkhammar H, Eriksson M, Hallquist A, Kolmert T. Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environ Health Perspect. 2003;111(7):930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zoeller RT, Brown T, Doan L, Gore A, Skakkebaek N, Soto A, Woodruff T, Vom Saal F. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153(9):4097–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Sanchez Bachega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fontenele, E., Quezado, R., Bachega, T.S. (2023). Influence of Endocrine Disruptors on Male Reproductive Tract. In: Hohl, A. (eds) Testosterone. Springer, Cham. https://doi.org/10.1007/978-3-031-31501-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31501-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31500-8

  • Online ISBN: 978-3-031-31501-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics