Skip to main content

Direct Numerical Simulation of Wall-Bounded Turbulence at High-Pressure Transcritical Conditions

  • Conference paper
  • First Online:
Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power (NICFD 2022)

Part of the book series: ERCOFTAC Series ((ERCO,volume 29))

  • 285 Accesses

Abstract

Supercritical fluids are commonly utilized in energy conversion and propulsion applications due to the higher power and efficiencies they provide. Their increased performance is connected to the thermophysical properties they exhibit around the pseudo-boiling region, in which density is relatively large while transport coefficients are similar to those of a gas. Consequently, higher levels of turbulence intensity can be achieved, resulting in mixing and heat transfer enhancements with respect to fluids operating at atmospheric conditions. However, supercritical fluids turbulence is a research field still in its infancy, and, thus, requires to be carefully investigated and further characterized. In this regard, this work analyzes supercritical wall-bounded turbulence by computing direct numerical simulations of high-pressure N\(_2\) at transcritical temperature conditions imposed by a temperature difference between the bottom and top walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae, J.H., Yoo, J.Y., Choi, H.: Direct numerical simulation of turbulent supercritical flows with heat transfer. Phys. Fluids 17, 105104 (2005)

    Article  Google Scholar 

  2. Bae, J.H., Yoo, J.Y., McEligot, D.M.: Direct numerical simulation of heated CO\(_2\) flows at supercritical pressure in a vertical annulus at Re = 8900. Phys. Fluids 20, 055108 (2008)

    Article  Google Scholar 

  3. Bernades, M., Capuano, F., Trias, F.X., Jofre, L.: Energy-preserving stable computations of high-pressure supercritical fluids turbulence. In: 9th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), pp. 1–12 (2022)

    Google Scholar 

  4. Bernades, M., Jofre, L.: Thermophysical analysis of microconfined turbulent flow regimes at supercritical fluid conditions in heat transfer applications. J. Heat Transfer 144, 082501 (2022)

    Article  Google Scholar 

  5. Burcat, A., Ruscic, B.: Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Technical report, Argonne National Laboratory (2005)

    Google Scholar 

  6. Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E.: Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27, 671–679 (1988)

    Article  Google Scholar 

  7. Chung, T.H., Lee, L.L., Starling, K.E.: Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Ind. Eng. Chem. Fundam. 23, 8–13 (1984)

    Article  Google Scholar 

  8. Coppola, G., Capuano, F., Pirozzoli, S., de Luca, L.: Numerically stable formulations of convective terms for turbulent compressible flows. J. Comput. Phys. 382, 86–104 (2019)

    Article  MathSciNet  Google Scholar 

  9. Doehring, A., Kaller, T., Schmidt, S.J., Adams, N.A.: Large-eddy simulation of turbulent channel flow at transcritical states. Int. J. Heat Fluid Flow 89, 108781 (2021)

    Article  Google Scholar 

  10. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  11. Jofre, L., Oyarzún, G.: RHEA - an open-source Reproducible and Hybrid-architecture flow solver Engineered for Academia (2020)

    Google Scholar 

  12. Jofre, L., Urzay, J.: A characteristic length scale for density gradients in supercritical monocomponent flows near pseudoboiling. In: Annual Research Briefs, pp. 277–282. Center for Turbulence Research, Stanford University (2020)

    Google Scholar 

  13. Jofre, L., Urzay, J.: Transcritical diffuse-interface hydrodynamics of propellants in high-pressure combustors of chemical propulsion systems. Prog. Energy Combust. Sci. 82, 100877 (2021)

    Article  Google Scholar 

  14. Kawai, S.: Heated transcritical and unheated non-transcritical turbulent boundary layers at supercritical pressures. J. Fluid Mech. 865, 563–601 (2019)

    Article  MathSciNet  Google Scholar 

  15. Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid. J. Comput. Phys. 227(3), 1676–1700 (2008)

    Article  MathSciNet  Google Scholar 

  16. Knez, Z., Markocic, E., Leitgeb, M., Primozic, M., Knez, M., Skerget, M.: Industrial applications of supercritical fluids: a review. J. Energy 77, 235–243 (2014)

    Article  Google Scholar 

  17. Larsson, J., Lele, S., Moin, P.: Effect of numerical dissipation on the predicted spectra for compressible turbulence. In: Annual Research Briefs, pp. 47–52. Center for Turbulence Research, Stanford University (2007)

    Google Scholar 

  18. Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ma, P.C., Yang, X.I.A., Ihme, M.: Structure of wall-bounded flows at transcritical conditions. Phys. Rev. Fluids 3, 034609 (2018)

    Article  Google Scholar 

  20. Nelson, K.S., Fringer, O.B.: Reducing spin-up time for simulations of turbulent channel flow. Phys. Fluids 29, 105101 (2017)

    Article  Google Scholar 

  21. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  Google Scholar 

  22. Pirozzoli, S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 7180–7190 (2010)

    Article  MathSciNet  Google Scholar 

  23. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: Properties of Gases and Liquids, 5th edn. McGraw Hill, New York (2001)

    Google Scholar 

  24. Reynolds, W.C., Colonna, P.: Thermodynamics: Fundamentals and Engineering Applications, 1st edn. Cambridge University Press, Cambridge (2019)

    Google Scholar 

  25. Sengupta, U., Nemati, H., Boersma, B.J., Pecnik, R.: Fully compressible low-Mach number simulations of carbon-dioxide at supercritical pressures and trans-critical temperatures. Flow Turbul. Combust. 99, 909–931 (2017). https://doi.org/10.1007/s10494-017-9872-4

    Article  Google Scholar 

  26. Shu, C.W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics. LNCSE, vol. 9, pp. 439–582. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03882-6_5

    Chapter  Google Scholar 

  27. Smits, A.J., McKeon, B.J., Marusic, I.: High-Reynolds number wall turbulence. Ann. Rev. Fluid Mech. 43(3), 53–75 (2011)

    Google Scholar 

  28. Sreenivasan, K.R.: Turbulent mixing: a perspective. PNAS 116, 18175–18183 (2019)

    Article  MathSciNet  Google Scholar 

  29. Toro, F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/b79761

    Book  Google Scholar 

  30. Trettel, A., Larsson, J.: Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28, 026102 (2016)

    Article  Google Scholar 

  31. Xie, G., Xu, X., Lei, X., Li, Z., Li, Y., Sunden, B.: Heat transfer behaviours of some supercritical fluids: a review. Chin. J. Aeronaut. 35(1), 290–306 (2022)

    Article  Google Scholar 

  32. Yoo, J.Y.: The turbulent flows of supercritical fluids with heat transfer. Ann. Rev. Fluid Mech. 45, 495–525 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is funded by the European Union (ERC, SCRAMBLE, 101040379). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. The authors gratefully acknowledge the Formació de Professorat Universitari scholarship (FPU-UPC R.D 103/2019) of the Universitat Politècnica de Catalunya - BarcelonaTech (UPC) (Spain), the SRG (2021-SGR-01045) program of the Generalitat de Catalunya (Spain), the Beatriz Galindo program (Distinguished Researcher, BGP18/00026) of the Ministerio de Educación y Formación Profesional (Spain), and the computer resources at FinisTerrae III and the technical support provided by CESGA (RES-IM-2023-1-0005). Francesco Capuano is a Serra Húnter fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bernades .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernades, M., Capuano, F., Jofre, L. (2023). Direct Numerical Simulation of Wall-Bounded Turbulence at High-Pressure Transcritical Conditions. In: White, M., El Samad, T., Karathanassis, I., Sayma, A., Pini, M., Guardone, A. (eds) Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power. NICFD 2022. ERCOFTAC Series, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-30936-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30936-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30935-9

  • Online ISBN: 978-3-031-30936-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics