Skip to main content

High Order ENO and WENO Schemes for Computational Fluid Dynamics

  • Chapter
High-Order Methods for Computational Physics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 9))

Abstract

In these lectures we present the basic ideas and recent development in the construction, analysis, and implementation of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes and their applications to computational fluid dynamics. ENO and WENO schemes are high order accurate finite difference or finite volume schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in computational fluid dynamics and other applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics.

Research of the author was partially supported by NSF grants DMS-9500814, DMS-9804985, ECS-9627849 and INT-9601084, ARO grant DAAG55-97-1-0318, NASA Langley grant NAG-1-2070, and AFOSR grant F49620-96-1-0150.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of Computational Physics, v114 (1994), pp. 45–58.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Adams and K. Shariff, A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, Journal of Computational Physics, v127 (1996), pp. 27–51.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Atkins and C.-W. Shu, GKS and eigenvalue stability analysis of high order upwind scheme,in preparation.

    Google Scholar 

  4. G. R. Baker and M. J. Shelley, On the connection between thin vortex layers and vortex sheets, Journal of Fluid Mechanics, v215 (1990), pp. 161–194.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Balsam and C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, preprint.

    Google Scholar 

  6. M. Bardi and S. Osher, The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations, SIAM Journal on Mathematical Analysis, v22 (1991), pp. 344–351.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Barth and P. Frederickson, High order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA Paper No. 90–0013.

    Google Scholar 

  8. J. Bell, P. Colella and H. Glaz, A Second Order Projection Method for the Incompressible Navier-Stokes Equations, Journal of Computational Physics, v85, 1989, pp. 257–283.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Bianco, G. Puppo and G. Russo, High order central schemes for hyperbolic systems of conservation laws,SIAM Journal on Scientific Computing, to appear.

    Google Scholar 

  10. B. Bihari and A. Harten, Application of generalized wavelets: an adaptive multiresolution scheme, Journal of Computational and Applied Mathematics, v61 (1995), pp. 275–321.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Cai and C.-W. Shu, Uniform high-order spectral methods for one-and two-dimensional Euler equations, Journal of Computational Physics, v104 (1993), pp. 427–443.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Canuto, M.Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, 1988.

    Google Scholar 

  13. M. Carpenter and C. Kennedy, Fourth-order 2N-storage Runge-Kutta schemes, NASA TM 109112, NASA Langley Research Center, June 1994.

    Google Scholar 

  14. J. Casper, Finite-volume implementation of high-order essentially nonoscillatory schemes in two dimensions, AIAA Journal, v30 (1992), pp. 2829–2835.

    Article  Google Scholar 

  15. J. Casper and H. Atkins, A finite-volume high-order ENO scheme for two dimensional hyperbolic systems, Journal of Computational Physics, v106 (1993), pp. 62–76.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Casper, C.-W. Shu and H. Atkins, Comparison of two formulations for high-order accurate essentially nonoscillatory schemes, AIAA Journal, v32 (1994), pp. 1970–1977.

    Article  MATH  Google Scholar 

  17. S. Christofi, The study of building blocks for ENO schemes, Ph.D. thesis, Division of Applied Mathematics, Brown University, September 1995.

    Google Scholar 

  18. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Mathematics of Computation, v52 (1989), pp. 411–435.

    MathSciNet  MATH  Google Scholar 

  19. B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, Journal of Computational Physics, v84 (1989), pp. 90113.

    Article  MathSciNet  Google Scholar 

  20. B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Mathematics of Computation, v54 (1990), pp. 545–581.

    MathSciNet  MATH  Google Scholar 

  21. B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics, v141 (1998), pp. 199–224.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Colella and H.M. Glaz, Efficient solution algorithms for the Riemann problem for real gases, Journal of Computational Physics, v59 (1985), pp. 264–289.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Coquet and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics equations, SIAM Journal on Numerical Analysis, v35 (1998), pp. 2223–2249.

    Article  MathSciNet  Google Scholar 

  24. M. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations, Transactions of the American Mathematical Society, v277 (1983), pp. 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Crandall and P. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Mathematics of Computation, v43 (1984), pp. 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  26. R.L. Deschambault and I.I. Glass, An update on non-stationary oblique shock-wave reflections: actual isopycnics and numerical experiments, Journal of Fluid Mechanics, v131 (1983), pp. 27–57.

    Article  Google Scholar 

  27. A. Dolezal and S. Wong, Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes, Journal of Computational Physics, v120 (1995), pp. 266–277.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Donat and A. Marquina, Capturing shock reflections: an improved flux formula, Journal of Computational Physics, v125 (1996), pp. 42–58.

    Article  MathSciNet  MATH  Google Scholar 

  29. W. E and C.-W. Shu, A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow, Journal of Computational Physics, v110 (1994), pp. 39–46.

    Article  Google Scholar 

  30. G. Erlebacher, Y. Hussaini and C.-W. Shu, Interaction of a shock with a longitudinal vortex, Journal of Fluid Mechanics, v337 (1997), pp. 129–153.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Fatemi, J. Jerome and S. Osher, Solution of the hydrodynamic device model using high order non-oscillatory shock capturing algorithms, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v10 (1991), pp. 232–244.

    Article  Google Scholar 

  32. O. Friedrich, Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, Journal of Computational Physics, v144 (1998), pp. 194–212.

    Article  MathSciNet  Google Scholar 

  33. P. Glaister, An efficient numerical method for compressible flows of a real gas using arithmetic averaging, Computers and Mathematics with Applications, v28 (1994), pp. 97–113.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Glaister, An analysis of averaging procedures in a Riemann solver for compressible flows of a real gas, Computers and Mathematics with Applications, v33 (1997), pp. 105–119.

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Springer, 1996.

    Google Scholar 

  36. S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of Computation, v67 (1998), pp. 73–85.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Gottlieb, C.-W. Shu and E. Tadmor, Norm preserving time discretizations, in preparation.

    Google Scholar 

  38. B. Grossman and R.W. Walters, Analysis of flux-split algorithms for Euler’s equations with real gases, AIAA Journal, v27 (1989), pp. 524–531.

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Gustafsson, H.-O. Kreiss and A. Sundstrom, Stability theory of difference approximations for mixed initial boundary value problems, II, Mathematics of Computation, v26 (1972), pp. 649–686.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Harabetian, S. Osher and C.-W. Shu, An Eulerian approach for vortex motion using a level set regularization procedure, Journal of Computational Physics, v127 (1996), pp. 15–26.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Harten, The artificial compression method for computation of shocks and contact discontinuities III: self-adjusting hybrid schemes, Mathematics of Computation, v32 (1978), pp. 363–389.

    MathSciNet  Google Scholar 

  42. A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, v49 (1983), pp. 357–393.

    Article  MathSciNet  Google Scholar 

  43. A. Harten, Preliminary results on the extension of ENO schemes to two dimensional problems, in Proceedings of the International Conference on Hyperbolic Problems, Saint-Etienne, 1986.

    Google Scholar 

  44. A. Harten, ENO schemes with subcell resolution, Journal of Computational Physics, v83 (1989), pp. 148–184.

    Article  MathSciNet  Google Scholar 

  45. A. Harten, J. Hyman and P. Lax, On finite difference approximations and entropy conditions for shocks, Communications in Pure and Applied Mathematics, v29 (1976), pp. 297–322.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Harten and S. Osher, Uniformly high-order accurate non-oscillatory schemes, I, SIAM Journal on Numerical Analysis, v24 (1987), pp. 279–309.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order essentially non-oscillatory schemes, III, Journal of Computational Physics, v71 (1987), pp. 231–303.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Harten, S. Osher, B. Engquist and S. Chakravarthy, Some results on uniformly high order accurate essentially non-oscillatory schemes, Applied Numerical Mathematics, v2 (1986), pp. 347–377.

    Article  MathSciNet  MATH  Google Scholar 

  49. C. Hu and C.-W. Shu, High order weighted ENO schemes for unstructured meshes: preliminary results, Computational Fluid Dynamics 98, Invited Lectures, Minisymposia and Special Technological Sessions of the Fourth European Computational Fluid Dynamics Conference, K. Papailiou, D. Tsahalis, J. Periaux and D. Knorzer, Editors, John Wiley and Sons, v2, September 1998, pp. 356–362.

    Google Scholar 

  50. C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes, Journal of Computational Physics, to appear

    Google Scholar 

  51. A. In, Numerical evaluation of an energy relaxation method for inviscid real fluids, SIAM Journal on Scientific Computing, to appear.

    Google Scholar 

  52. A. Iske and T. Soner, On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions, Numerische Mathematik, v74 (1996), pp. 177–201.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Jerome and C.-W. Shu, Energy models for one-carrier transport in semiconductor devices, in IMA Volumes in Mathematics and Its Applications, v59, W. Coughran, J. Cole, P. Lloyd and J. White, editors, Springer-Verlag, 1994, pp. 185–207.

    Google Scholar 

  54. J. Jerome and C.-W. Shu, Transport effects and characteristic modes in the modeling and simulation of submicron devices, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v14 (1995), pp. 917–923.

    Article  Google Scholar 

  55. G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, v126 (1996), pp. 202–228.

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Jiang and S.-H. Yu, Discrete shocks for finite difference approximations to scalar conservation laws, SIAM Journal on Numerical Analysis, v35 (1998), pp. 749–772.

    Article  MathSciNet  MATH  Google Scholar 

  57. G. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing, to appear.

    Google Scholar 

  58. D. A. Kopriva, A Practical Assessment of Spectral Accuracy for Hyperbolic Problems with Discontinuities, Journal of Scientific Computing, v2, 1987, pp. 249–262.

    Article  MATH  Google Scholar 

  59. R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, Journal of Fluid Mechanics, v167 (1986), pp. 65–93.

    Article  MathSciNet  Google Scholar 

  60. R. Krasny, Desingularization of periodic vortex sheet roll-up, Journal of Computational Physics, v65 (1986), pp. 292–313.

    Article  Google Scholar 

  61. F. Ladeinde, E. O’Brien, X. Cai and W. Liu, Advection by polytropic compressible turbulence, Physics of Fluids, v7 (1995), pp. 2848–2857.

    Article  MATH  Google Scholar 

  62. F. Lafon and S. Osher, High-order 2-dimensional nonoscillatory methods for solving Hamilton-Jacobi scalar equations, Journal of Computational Physics, v123 (1996), pp. 235–253.

    Article  MathSciNet  MATH  Google Scholar 

  63. B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows, Journal of Computational Physics, v95 (1991), pp. 59–84.

    Article  MathSciNet  MATH  Google Scholar 

  64. P. D. Lax, Weak solutions of non-linear hyperbolic equations and their numerical computations, Communications in Pure and Applied Mathematics, v7 (1954), pp. 159–193.

    Article  Google Scholar 

  65. P. D. Lax and B. Wendroff, Systems of conservation laws, Communications in Pure and Applied Mathematics, v13 (1960), pp. 217–237.

    Article  MathSciNet  MATH  Google Scholar 

  66. R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Verlag, Basel, 1990.

    MATH  Google Scholar 

  67. D. Levy, G. Puppo and G. Russo, Central WENO schemes for hyperbolic systems of conservation laws,Mathematical Modelling and Numerical Analysis, to appear.

    Google Scholar 

  68. M.S. Liou, B. van Leer, and J.-S. Shuen, Splitting of inviscid fluxes for real gases, Journal of Computational Physics, v87 (1990), pp. 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  69. X.-D. Liu, S. Osher and T. Chan, Weighted essentially nonoscillatory schemes, Journal of Computational Physics, v115 (1994), pp. 200–212.

    Article  MathSciNet  MATH  Google Scholar 

  70. X.-D. Liu and S. Osher, Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids, Journal of Computational Physics, v142 (1998), pp. 304–330.

    Article  MathSciNet  MATH  Google Scholar 

  71. C.-Y. Loh and M.S. Liou, Lagrangian solution of supersonic real gas flows, Journal of Computational Physics, v104 (1993), pp. 150–161.

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Majda, J. McDonough and S. Osher, The Fourier Method for Nonsmooth Initial Data, Mathematics of Computation, v32, 1978, pp. 1041–1081.

    Article  MathSciNet  MATH  Google Scholar 

  73. J.-L. Montagné, H.C. Yee, and M. Vinokur, Comparative study of high-resolution shock-capturing schemes for a real gas, AIAA Journal, v27 (1989), pp. 1332–1346.

    Article  Google Scholar 

  74. P. Montarnal and C.-W. Shu, Real gas computation using an energy relaxation method and high order WENO schemes,Journal of Computational Physics, to appear.

    Google Scholar 

  75. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, Journal of Computational Physics, v87 (1990), pp. 408–463.

    Article  MathSciNet  MATH  Google Scholar 

  76. S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM Journal on Numerical Analysis, v21 (1984), pp. 217–235.

    Article  MathSciNet  Google Scholar 

  77. S. Osher and S. Chakravarthy, Upwind schemes and boundary conditions with applications to Euler equations in general geometries, Journal of Computational Physics, v50 (1983), pp. 447–481.

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation, Journal of Computational Physics, v79 (1988), pp. 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  79. S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM Journal on Numerical Analysis, v28 (1991), pp. 907–922.

    Article  MathSciNet  MATH  Google Scholar 

  80. C.S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, v25 (1977), pp. 220–252.

    Article  MathSciNet  Google Scholar 

  81. T.D. Riney, Numerical evaluation of hypervelocity impact phenomena, in High-velocity impact phenomena, R. Kinslow, ed., Academic Press, 1970, ch. V, pp. 158–212.

    Google Scholar 

  82. P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, v43 (1981), pp. 357–372.

    Article  MathSciNet  MATH  Google Scholar 

  83. A. Rogerson and E. Meiberg, A numerical study of the convergence properties of ENO schemes. Journal of Scientific Computing, v5 (1990), pp. 151–167.

    Article  MATH  Google Scholar 

  84. J. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Dynamics, Computer Vision, and Material Science, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, New York, New York, 1996.

    Google Scholar 

  85. C.-W. Shu, TVB uniformly high order schemes for conservation laws, Mathematics of Computation, v49 (1987), pp. 105–121.

    Article  MathSciNet  Google Scholar 

  86. C.-W. Shu, Total-Variation-Diminishing time discretizations, SIAM Journal on Scientific and Statistical Computing, v9 (1988), pp. 1073–1084.

    Article  Google Scholar 

  87. C.-W. Shu, Numerical experiments on the accuracy of ENO and modified ENO schemes, Journal of Scientific Computing, v5 (1990), pp. 127–149.

    Article  Google Scholar 

  88. C.-W. Shu, Preface to the republication of “Uniform high order essentially non-oscillatory schemes, III,” by Harten, Engquist, Osher, and Chakravarthy, Journal of Computational Physics, v131 (1997), pp. 1–2.

    Article  Google Scholar 

  89. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics, v77 (1988), pp. 439–471.

    Article  MathSciNet  MATH  Google Scholar 

  90. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes II, Journal of Computational Physics, v83 (1989), pp. 32–78.

    Article  MathSciNet  MATH  Google Scholar 

  91. C.-W. Shu, T.A. Zang, G. Erlebacher, D. Whitaker, and S. Osher, High order ENO schemes applied to two-and three-dimensional compressible flow, Applied Numerical Mathematics, v9 (1992), pp. 45–71.

    Article  MATH  Google Scholar 

  92. C.-W. Shu and Y. Zeng, High order essentially non-oscillatory scheme for viscoelasticity with fading memory, Quarterly of Applied Mathematics, v55 (1997), pp. 459–484.

    MathSciNet  MATH  Google Scholar 

  93. K. Siddiqi, B. Kimia and C.-W. Shu, Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution, Computer Vision Graphics and Image Processing: Graphical Models and Image Processing (CVGIP:GMIP), v59 (1997), pp. 278–301.

    Google Scholar 

  94. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  95. G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, v27 (1978), pp. 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  96. G. A. Sod, Numerical Methods in Fluid Dynamics, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  97. T. Sonar, On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection, Computer Methods in Applied Mechanics and Engineering, v140 (1997), pp. 157–181.

    Article  MathSciNet  Google Scholar 

  98. J. Strikwerda, Initial boundary value problems for the method of lines, Journal of Computational Physics, v34 (1980), pp. 94–107.

    Article  MathSciNet  Google Scholar 

  99. M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two phase flow, Journal of Computational Physics, v114 (1994), pp. 146–159.

    Article  MATH  Google Scholar 

  100. P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM Journal on Numerical Analysis, v21 (1984), pp. 995–1011.

    Article  MathSciNet  MATH  Google Scholar 

  101. B. van Leer, Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method Journal of Computational Physics, v32 (1979), pp.101–136.

    Google Scholar 

  102. F. Walsteijn, Robust numerical methods for 2D turbulence, Journal of Computational Physics, v114 (1994), pp. 129–145.

    Article  MathSciNet  Google Scholar 

  103. J.H. Williamson, Low-storage Runge-Kutta schemes, Journal of Computational Physics, v35 (1980), pp. 48–56.

    Article  MathSciNet  MATH  Google Scholar 

  104. P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, v54 (1984), pp. 115–173.

    Article  MathSciNet  MATH  Google Scholar 

  105. H. Yang, An artificial compression method for ENO schemes, the slope modification method, Journal of Computational Physics, v89 (1990), pp. 125–160.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shu, CW. (1999). High Order ENO and WENO Schemes for Computational Fluid Dynamics. In: Barth, T.J., Deconinck, H. (eds) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03882-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03882-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03884-0

  • Online ISBN: 978-3-662-03882-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics