Skip to main content

The Genetics of Exceptional Longevity in Humans and Relevance to Healthy Aging

  • Chapter
  • First Online:
Current Perspectives on Centenarians

Part of the book series: International Perspectives on Aging ((Int. Perspect. Aging,volume 36))

  • 114 Accesses

Abstract

Exceptional longevity aggregates in families, consistent with a genetic contribution to living a very long life. Understanding the genetic underpinnings of exceptional longevity may point to therapeutic targets for healthy aging and lifespan extension. This chapter first provides a review of the evidence for familial aggregation of exceptional lifespan and then summarizes biological insights about aging trajectories gleaned from rare syndromes associated with accelerated aging (progeroid syndromes) and animal models for which single gene mutations have been associated with marked extension of lifespan. We then describe how some of the signaling pathways first identified in animal models of lifespan extension may relate to caloric restriction, which constitutes one of the most robust interventions available to extend lifespan in humans. Finally, we describe the some of the challenges in current efforts to identify lifespan-extending genetic variants in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Broer, L., Buchman, A. S., Deelen, J., Evans, D. S., Faul, J. D., Lunetta, K. L., Sebastiani, P., Smith, J. A., Smith, A. V., Tanaka, T., et al. (2015). GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 70, 110–118.

    Article  Google Scholar 

  • Campisi, J., Kapahi, P., Lithgow, G. J., Melov, S., Newman, J. C., & Verdin, E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature, 571, 183–192.

    Article  Google Scholar 

  • Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W., et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325, 201–204.

    Article  Google Scholar 

  • Deelen, J., Evans, D. S., Arking, D. E., Tesi, N., Nygaard, M., Liu, X., Wojczynski, M. K., Biggs, M. L., van der Spek, A., Atzmon, G., et al. (2019). A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications, 10, 3669.

    Article  Google Scholar 

  • Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., Erdos, M. R., Robbins, C. M., Moses, T. Y., Berglund, P., et al. (2003). Recurrent de novo point mutations in Lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423, 293–298.

    Article  Google Scholar 

  • Field, A. E., Robertson, N. A., Wang, T., Havas, A., Ideker, T., & Adams, P. D. (2018). DNA methylation clocks in aging: Categories, causes, and consequences. Molecular Cell, 71, 882–895.

    Article  Google Scholar 

  • Fontana, L., Meyer, T. E., Klein, S., & Holloszy, J. O. (2004). Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proceedings of the National Academy of Sciences of the United States of America, 101, 6659–6663.

    Article  Google Scholar 

  • Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span—From yeast to humans. Science, 328, 321–326.

    Article  Google Scholar 

  • Galvani-Townsend, S., Martinez, I., & Pandey, A. (2022). Is life expectancy higher in countries and territories with publicly funded health care? Global analysis of health care access and the social determinants of health. Journal of Global Health, 12, 04091.

    Article  Google Scholar 

  • Gerdes, L. U., Jeune, B., Ranberg, K. A., Nybo, H., & Vaupel, J. W. (2000). Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle- aged men: Apolipoprotein E gene is a “frailty gene,” not a “longevity gene”. Genetic Epidemiology, 19, 202–210.

    Article  Google Scholar 

  • Goto, M., Rubenstein, M., Weber, J., Woods, K., & Drayna, D. (1992). Genetic linkage of Werner’s syndrome to five markers on chromosome 8. Nature, 355, 735–738.

    Article  Google Scholar 

  • Herskind, A. M., McGue, M., Holm, N. V., Sorensen, T. I., Harvald, B., & Vaupel, J. W. (1996). The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870–1900. Human Genetics, 97, 319–323.

    Article  Google Scholar 

  • Iachine, I. A., Holm, N. V., Harris, J. R., Begun, A. Z., Iachina, M. K., Laitinen, M., Kaprio, J., & Yashin, A. I. (1998). How heritable is individual susceptibility to death? The results of an analysis of survival data on Danish, Swedish and Finnish twins. Twin Research, 1, 196–205.

    Article  Google Scholar 

  • Kaplanis, J., Gordon, A., Shor, T., Weissbrod, O., Geiger, D., Wahl, M., Gershovits, M., Markus, B., Sheikh, M., Gymrek, M., et al. (2018). Quantitative analysis of population-scale family trees with millions of relatives. Science, 360, 171–175.

    Article  Google Scholar 

  • Karikkineth, A. C., Scheibye-Knudsen, M., Fivenson, E., Croteau, D. L., & Bohr, V. A. (2017). Cockayne syndrome: Clinical features, model systems and pathways. Ageing Research Reviews, 33, 3–17.

    Article  Google Scholar 

  • Kenyon, C. J. (2010). The genetics of ageing. Nature, 464, 504–512.

    Article  Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A., & Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature, 366, 461–464.

    Article  Google Scholar 

  • Kim, Y. J., Kim, H. S., & Seo, Y. R. (2018). Genomic approach to understand the association of DNA repair with longevity and healthy aging using genomic databases of oldest-old population. Oxidative Medicine and Cellular Longevity, 2018, 2984730–2984712.

    Article  Google Scholar 

  • Ljungquist, B., Berg, S., Lanke, J., McClearn, G. E., & Pedersen, N. L. (1998). The effect of genetic factors for longevity: A comparison of identical and fraternal twins in the Swedish twin registry. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 53, M441–M446.

    Article  Google Scholar 

  • Lohman, T., Bains, G., Berk, L., & Lohman, E. (2021). Predictors of biological age: The implications for wellness and aging research. Gerontol Geriatr Med, 7, 23337214211046419.

    Article  Google Scholar 

  • Mitchell, B. D., Hsueh, W. C., King, T. M., Pollin, T. I., Sorkin, J., Agarwala, R., Schäffer, A. A., & Shuldiner, A. R. (2001). Heritability of life span in the old order Amish. American Journal of Medical Genetics, 102, 346–352.

    Article  Google Scholar 

  • Oshima, J., Sidorova, J. M., & Monnat, R. J., Jr. (2017). Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Research Reviews, 33, 105–114.

    Article  Google Scholar 

  • Perls, T., & Terry, D. (2003). Genetics of exceptional longevity. ExpGerontol, 38, 725–730.

    Google Scholar 

  • Perls, T. T., Bubrick, E., Wager, C. G., Vijg, J., & Kruglyak, L. (1998). Siblings of centenarians live longer. Lancet, 351, 1560.

    Article  Google Scholar 

  • Porter, H. L., Brown, C. A., Roopnarinesingh, X., Giles, C. B., Georgescu, C., Freeman, W. M., & Wren, J. D. (2021). Many chronological aging clocks can be found throughout the epigenome: Implications for quantifying biological aging. Aging Cell, 20, e13492.

    Article  Google Scholar 

  • Qian, M., Liu, Z., Peng, L., Tang, X., Meng, F., Ao, Y., Zhou, M., Wang, M., Cao, X., Qin, B., et al. (2018). Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria. eLife, 7, e34836.

    Article  Google Scholar 

  • Ruby, J. G., Wright, K. M., Rand, K. A., Kermany, A., Noto, K., Curtis, D., Varner, N., Garrigan, D., Slinkov, D., Dorfman, I., et al. (2018). Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics, 210, 1109–1124.

    Article  Google Scholar 

  • Sanese, P., Forte, G., Disciglio, V., Grossi, V., & Simone, C. (2019). FOXO3 on the road to longevity: Lessons from SNPs and chromatin hubs. Computational and Structural Biotechnology Journal, 17, 737–745.

    Article  Google Scholar 

  • Satoh, M., Imai, M., Sugimoto, M., Goto, M., & Furuichi, Y. (1999). Prevalence of Werner’s syndrome heterozygotes in Japan. Lancet, 353, 1766.

    Article  Google Scholar 

  • Sebastiani, P., Gurinovich, A., Bae, H., Andersen, S., Malovini, A., Atzmon, G., Villa, F., Kraja, A. T., Ben-Avraham, D., Barzilai, N., et al. (2017). Four genome-wide association studies identify new extreme longevity variants. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72, 1453–1464.

    Article  Google Scholar 

  • Statistica Research Department. (2022). Number of centenarians worldwide 2000–2100. Available from www.statista.com/statistics/996597/number-centenarians-worldwide/. Accessed on 1/7/2023.

  • Taub, M. A., Conomos, M. P., Keener, R., Iyer, K. R., Weinstock, J. S., Yanek, L. R., Lane, J., Miller-Fleming, T. W., Brody, J. A., Raffield, L. M., et al. (2022). Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. Cell Genom, 2, 100084.

    Article  Google Scholar 

  • Terry, D. F., Wilcox, M. A., McCormick, M. A., Pennington, J. Y., Schoenhofen, E. A., Andersen, S. L., & Perls, T. T. (2004a). Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. Journal of the American Geriatrics Society, 52, 2074–2076.

    Article  Google Scholar 

  • Terry, D. F., Wilcox, M. A., McCormick, M. A., & Perls, T. T. (2004b). Cardiovascular disease delay in centenarian offspring. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 59, 385–389.

    Article  Google Scholar 

  • Tian, X., Firsanov, D., Zhang, Z., Cheng, Y., Luo, L., Tombline, G., Tan, R., Simon, M., Henderson, S., Steffan, J., et al. (2019). SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell, 177, 622–638.e622.

    Article  Google Scholar 

  • Timmers, P., Wilson, J. F., Joshi, P. K., & Deelen, J. (2020). Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. Nature Communications, 11, 3570.

    Article  Google Scholar 

  • Walford, R. L., Mock, D., Verdery, R., & MacCallum, T. (2002). Calorie restriction in biosphere 2: Alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57, B211–B224.

    Article  Google Scholar 

  • Wright, K. M., Rand, K. A., Kermany, A., Noto, K., Curtis, D., Garrigan, D., Slinkov, D., Dorfman, I., Granka, J. M., Byrnes, J., et al. (2019). A prospective analysis of genetic variants associated with human lifespan. G3 (Bethesda), 9, 2863–2878.

    Article  Google Scholar 

  • Yu, C. E., Oshima, J., Wijsman, E. M., Nakura, J., Miki, T., Piussan, C., Matthews, S., Fu, Y. H., Mulligan, J., Martin, G. M., et al. (1997). Mutations in the consensus helicase domains of the Werner syndrome gene. Werner’s Syndrome Collaborative Group. American Journal of Human Genetics, 60, 330–341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Braxton D. Mitchell .

Editor information

Editors and Affiliations

Multiple Choice Questions

Multiple Choice Questions

  1. 1.

    The most robust lifespan enhancing intervention is:

    1. A.

      Exercise

    2. B.

      Meditation

    3. C.

      Caloric restriction

    4. D.

      Vegetarian diet

      CORRECT RESPONSE: C

  2. 2.

    The insights most relevant to exceptional lifespan in humans that have been provided by animal models of extreme longevity pertain to:

    1. A.

      DNA repair

    2. B.

      Nutrition sensors and signaling pathways

    3. C.

      Disease resistance

      CORRECT RESPONSE: B

  3. 3.

    Human progerion syndromes are mostly due to:

    1. A.

      Mutations in genes related to DNA repair and cell instability

    2. B.

      Mutations in genes related to signaling pathways related to nutrition sensing

    3. C.

      Chromosome abnormalities

    4. D.

      Autosomal dominant disorders

      CORRECT RESPONSE: A

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitchell, B.D. (2023). The Genetics of Exceptional Longevity in Humans and Relevance to Healthy Aging. In: Kheirbek, R.E., Llorente, M.D. (eds) Current Perspectives on Centenarians. International Perspectives on Aging, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-30915-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30915-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30914-4

  • Online ISBN: 978-3-031-30915-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics