Skip to main content

GWAS and Meta-Analysis in Aging/Longevity

  • Chapter
  • First Online:
Longevity Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 847))

Abstract

Longevity is an extremely complex phenotype that is determined by environment, life style and genetics. Genome wide association studies (GWAS) have been a powerful tool to identify the genetic origin of other complex outcome with a similar heritability. In this chapter we discuss the findings all GWAS of longevity conducted to date. Various cut-off to define longevity have been used varying from 85+, 90+ and 100+ years and the impact of these difference are addressed in this chapter. The only consistent association emerging from GWAS to data is the APOE gene that has been already identified as a candidate gene. Although (GWAS) have identified biologically plausible genes and pathways, no new loci for longevity have been conclusively proven. A reason for not finding any replicated associations for longevity could be the complexity of the phenotype, although heterogeneity also underlies many other traits for which GWAS has been successful. One may argue that rare variants explain the high heritability of longevity and the segregation of the trait in families. Yet, whole genome analyses of GWAS data still suggest that over 80 % of the heritability is explained by common variants. Although findings of GWAS to date have been disappointing, there is ample opportunity to improve the statistical power of studies to find common variants with small effects. In the near future, joining of the published studies and new ones emerging may bring to surface new loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296(5570):1029–1031

    Article  CAS  PubMed  Google Scholar 

  2. Vaupel JW et al (1998) Biodemographic trajectories of longevity. Science 280(5365):855–860

    Article  CAS  PubMed  Google Scholar 

  3. Suzman R, Riley MW (1985) Introducing the “oldest old”. Milbank Mem Fund Q Health Soc 63(2):177–186

    Article  CAS  PubMed  Google Scholar 

  4. Arias E (2011) United States life tables, 2007. Natl Vital Stat Rep 59(9):1–60

    PubMed  Google Scholar 

  5. vB Hjelmborg J et al (2006) Genetic influence on human lifespan and longevity. Hum Genet 119(3):312–321

    Article  PubMed  Google Scholar 

  6. Herskind AM et al (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97(3):319–323

    Article  CAS  PubMed  Google Scholar 

  7. McGue M et al (1993) Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J Gerontol 48(6):B237–244

    Article  CAS  PubMed  Google Scholar 

  8. Kerber RA et al (2001) Familial excess longevity in Utah genealogies. J Gerontol A Biol Sci Med Sci 56(3):B130–139

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell BD et al (2001) Heritability of life span in the Old Order Amish. Am J Med Genet 102(4):346–352

    Article  CAS  PubMed  Google Scholar 

  10. Murabito JM, Yuan R, Lunetta KL (2012) The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci 67(5):470–479

    Article  PubMed  Google Scholar 

  11. McIlhany ML, Shaffer JW, Hines EA Jr (1975) The heritability of blood pressure: an investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Med J 136(2):57–64

    CAS  PubMed  Google Scholar 

  12. Pilia G et al (2006) Heritability of cardiovascular and personality traits in 6148 Sardinians. PLoS Genet 2(8):e132

    Article  PubMed Central  PubMed  Google Scholar 

  13. Anselmi CV et al (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12(2):95–104

    Article  CAS  PubMed  Google Scholar 

  14. Bathum L et al (2006) Apolipoprotein e genotypes: relationship to cognitive functioning, cognitive decline, and survival in nonagenarians. J Am Geriatr Soc 54(4):654–658

    Article  PubMed  Google Scholar 

  15. Beekman M et al (2013) Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell 12(2):184–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Flachsbart F et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106(8):2700–2705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gerdes LU et al (2000) Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein E gene is a frailty gene, not a longevity gene. Genet Epidemiol 19(3):202–210

    Article  CAS  PubMed  Google Scholar 

  18. Willcox BJ et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105(37):13987–13992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Beekman M et al (2010) Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc Natl Acad Sci U S A 107(42):18046–18049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ganna A et al (2013) Genetic determinants of mortality. Can findings from genome-wide association studies explain variation in human mortality? Hum Genet 132(5):553–561

    Article  PubMed  Google Scholar 

  21. Newman AB et al (2010) A meta-analysis of four genome-wide association studies of survival to age 90 years or older: the cohorts for heart and aging research in genomic epidemiology consortium. J Gerontol A Biol Sci Med Sci 65(5):478–487

    Article  PubMed  Google Scholar 

  22. Chi H et al (2000) Targeted deletion of Minpp1 provides new insight into the activity of multiple inositol polyphosphate phosphatase in vivo. Mol Cell Biol 20(17):6496–6507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Deelen J et al (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10(4):686–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Schachter F et al (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 6(1):29–32

    Article  CAS  PubMed  Google Scholar 

  25. Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7(6):436–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bertram L et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23

    Article  CAS  PubMed  Google Scholar 

  27. Nebel A et al (2011) A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech Ageing Dev 132(6–7):324–330

    Article  CAS  PubMed  Google Scholar 

  28. Malovini A et al (2011) Association study on long-living individuals from Southern Italy identifies rs10491334 in the CAMKIV gene that regulates survival proteins. Rejuvenation Res 14(3):283–291

    Article  CAS  PubMed  Google Scholar 

  29. Levy D et al (2007) Framingham heart study 100 k project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 8(Suppl 1):S3

    Article  PubMed Central  PubMed  Google Scholar 

  30. Sebastiani P et al (2012) Genetic signatures of exceptional longevity in humans. PLoS One 7(1):e29848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hekimi S (2006) How genetic analysis tests theories of animal aging. Nat Genet 38(9):985–991

    Article  CAS  PubMed  Google Scholar 

  32. Terry DF et al (2008) Disentangling the roles of disability and morbidity in survival to exceptional old age. Arch Intern Med 168(3):277–283

    Article  PubMed Central  PubMed  Google Scholar 

  33. Gray MD et al (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17(1):100–103

    Article  CAS  PubMed  Google Scholar 

  34. Eriksson M et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423(6937):293–298

    Article  CAS  PubMed  Google Scholar 

  35. Hitt R et al (1999) Centenarians: the older you get, the healthier you have been. Lancet 354(9179):652

    Article  CAS  PubMed  Google Scholar 

  36. Walter S et al (2011) A genome-wide association study of aging. Neurobiol Aging 32(11):2109 e15–28

    Article  PubMed  Google Scholar 

  37. Evert J et al (2003) Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci 58(3):232–237

    Article  PubMed  Google Scholar 

  38. Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135–145

    Article  PubMed Central  Google Scholar 

  39. Lango AH et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838

    Article  Google Scholar 

  40. Johnson TE (2006) Recent results: biomarkers of aging. Exp Gerontol 41(12):1243–1246

    Article  CAS  PubMed  Google Scholar 

  41. von Zglinicki T, Martin-Ruiz CM (2005) Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 5(2):197–203

    Article  Google Scholar 

  42. Codd V et al (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45(4):422–427, 427e1–2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Deelen J et al (2014) Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol 43(3):878–886

    Article  PubMed Central  PubMed  Google Scholar 

  44. Newman AB et al (2008) A physiologic index of comorbidity: relationship to mortality and disability. J Gerontol A Biol Sci Med Sci 63(6):603–609

    Article  PubMed Central  PubMed  Google Scholar 

  45. Schork NJ et al (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19(3):212–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17(9):502–510

    Google Scholar 

  47. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456(7218):18–21

    Article  CAS  PubMed  Google Scholar 

  48. Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69(1):124–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. van Duijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Broer, L., van Duijn, C. (2015). GWAS and Meta-Analysis in Aging/Longevity. In: Atzmon, PhD, G. (eds) Longevity Genes. Advances in Experimental Medicine and Biology, vol 847. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2404-2_5

Download citation

Publish with us

Policies and ethics