Skip to main content

Dose Optimisation in CT Colonography

  • Chapter
  • First Online:
CT Colonography for Radiographers
  • 120 Accesses

Abstract

There is a growing awareness that radiation dose originating from medical diagnostic procedures in radiology is contributing an increasing proportion of the total population dose, especially for examinations using computed tomography (CT). In response to the heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to optimise CT examinations to obtain the required diagnostic outcome while minimising the dose to the patient. This chapter describes various options for dose optimisation in CT colonography (CTC). These techniques are not necessarily unique to CTC and can be applied for optimisation of CT scan protocols for other sites as well. Dose reduction tools discussed include: tube current reduction and automatic tube current modulation, tube voltage, iterative reconstruction, filtration, active collimation, CT detectors, shielding, and other factors such as pitch and slice thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICRP. The 2007 Recommendations of the international commission on radiological protection, vol. 103. Vienna: ICRP Publication; 2007.

    Google Scholar 

  2. ICRP. Radiological protection in medicine, vol. 105. Vienna: ICRP Publication; 2007.

    Google Scholar 

  3. World Health Organization. Bonn call-for-action: joint position statement by IAEA and WHO. Geneva: World Health Organization; 2013.

    Google Scholar 

  4. Chodick G, Ronckers CM, Shalev V, Ron E. Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children. Isr Med Assoc J. 2007;9(8):584.

    PubMed  Google Scholar 

  5. Shah NB, Platt SL. ALARA: is there a cause for alarm? Reducing radiation risks from computed tomography scanning in children. Curr Opin Pediatr. 2008;20(3):243–7.

    Article  PubMed  Google Scholar 

  6. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  7. Brenner DJ, Elliston CD, Hall EJ, Berdon WE. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR. 2001;176(2):289–96.

    Article  CAS  PubMed  Google Scholar 

  8. Brenner DJ, Georgsson MA. Mass screening with CT colonography: should the radiation exposure be of concern? Gastroenterology. 2005;129(1):328–37.

    Article  PubMed  Google Scholar 

  9. National Research Council. BEIR VII phase 2 Report. Health risks from exposure to low levels of ionizing radiation. Washington, DC: The National Academies Press; 2006. p. 2.

    Google Scholar 

  10. Semelka RC, Armao DM, Elias J Jr, Picano E. The information imperative: is it time for an informed consent process explaining the risks of medical radiation? Radiology. 2012;262(1):15–8.

    Article  PubMed  Google Scholar 

  11. de González AB, Kim KP, Knudsen AB, Lansdorp-Vogelaar I, Rutter CM, Smith-Bindman R, et al. Radiation-related cancer risks from CT colonography screening: a risk-benefit analysis. AJR. 2011;196(4):816.

    Article  Google Scholar 

  12. Raman SP, Johnson PT, Deshmukh S, Mahesh M, Grant KL, Fishman EK. CT dose reduction applications: available tools on the latest generation of CT scanners. J Am Coll Radiol. 2013;10(1):37–41.

    Article  PubMed  Google Scholar 

  13. Cohnen M, Vogt C, Beck A, Andersen K, Heinen W, vom Dahl S, et al. Feasibility of MDCT colonography in ultra-low-dose technique in the detection of colorectal lesions: comparison with high-resolution video colonoscopy. AJR. 2004;183(5):1355–9.

    Article  PubMed  Google Scholar 

  14. Neri E, Faggioni L, Cerri F, Turini F, Angeli S, Cini L, et al. CT colonography versus double-contrast barium enema for screening of colorectal cancer: comparison of radiation burden. Abdom Imaging. 2010;35(5):596–601.

    Article  PubMed  Google Scholar 

  15. Hirofuji Y, Aoyama T, Koyama S, Kawaura C, Fujii K. Evaluation of patient dose for barium enemas and CT colonography in Japan. BJR. 2009;82:219–27.

    Article  CAS  PubMed  Google Scholar 

  16. Chang KJ, Yee J. Dose reduction methods for CT colonography. Abdom Imaging. 2013;38(2):224–32.

    Article  PubMed  Google Scholar 

  17. Iannaccone R, Laghi A, Catalano C, Brink JA, Mangiapane F, Trenna S, et al. Detection of colorectal lesions: lower-dose multi-detector row helical CT colonography compared with conventional colonoscopy. Radiology. 2003;229:775–81.

    Article  PubMed  Google Scholar 

  18. Iannaccone R, Catalano C, Mangiapane F, Murakami T, Lamazza A, Fiori E, et al. Colorectal polyps: detection with low-dose multi-detector row helical CT colonography versus two sequential colonoscopies. Radiology. 2005;237(3):927–37.

    Article  PubMed  Google Scholar 

  19. van Gelder RE, Venema HW, Serlie IW, Nio CY, Determann RM, Tipker CA, et al. CT colonography at different radiation dose levels: feasibility of dose reduction. Radiology. 2002;224(1):25–33.

    Article  PubMed  Google Scholar 

  20. van Gelder RE, Venema HW, Florie J, Nio CY, Serlie IW, Schutter MP, et al. CT colonography: feasibility of substantial dose reduction—comparison of medium to very low doses in identical patients. Radiology. 2004;232(2):611–20.

    Article  PubMed  Google Scholar 

  21. Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys. 1999;26(11):2248–53.

    Article  CAS  PubMed  Google Scholar 

  22. McCollough CH, Bruesewitz MR, Kofler JM Jr. CT dose reduction and dose management tools: overview of available options. Radiographics. 2006;26(2):503–12.

    Article  PubMed  Google Scholar 

  23. Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ. Multi-detector row CT systems and image-reconstruction techniques. Radiology. 2005;235(3):756–73.

    Article  PubMed  Google Scholar 

  24. Graser A, Wintersperger B, Suess C, Reiser M, Becker C. Dose reduction and image quality in MDCT colonography using tube current modulation. AJR. 2006;187(3):695–701.

    Article  CAS  PubMed  Google Scholar 

  25. Duan X, Wang J, Christner JA, Leng S, Grant KL, McCollough CH. Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR. 2011;197(3):689–95.

    Article  PubMed  Google Scholar 

  26. Lim HK, Lee KH, Kim SY, Kim KJ, Kim B, Lee H, et al. Does the amount of tagged stool and fluid significantly affect the radiation exposure in low-dose CT colonography performed with an automatic exposure control? Eur Radiol. 2011;21(2):345–52.

    Article  PubMed  Google Scholar 

  27. Elojeimy S, Tipnis S, Huda W. Relationship between radiographic techniques (kilovolt and milliampere-second) and CTDIvol. Radiat Prot Dosim. 2010;141(1):43–9.

    Article  Google Scholar 

  28. Chang KJ, Caovan DB, Grand DJ, Huda W, Mayo-Smith WW. Reducing radiation dose at CT colonography: decreasing tube voltage to 100 kVp. Radiology. 2013;266(3):791–800.

    Article  PubMed  Google Scholar 

  29. Huda W, Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. Radiology. 2000;217(2):430–5.

    Article  CAS  PubMed  Google Scholar 

  30. Yu L, Li H, Fletcher JG, McCollough CH. Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys. 2010;37(1):234–43.

    Article  PubMed  Google Scholar 

  31. Ramirez-Giraldo J, Primak A, Grant K, Schmidt B, Fuld M. Radiation dose optimization technologies in multidetector computed tomography: a review. Med Phys. 2014;2(2):420–30.

    Google Scholar 

  32. Winklehner A, Goetti R, Baumueller S, Karlo C, Schmidt B, Raupach R, et al. Automated attenuation-based tube potential selection for thoraco-abdominal computed tomography angiography: improved dose effectiveness. Investig Radiol. 2011;46(12):767–73.

    Article  CAS  Google Scholar 

  33. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med. 2012;28(2):94–108.

    Article  PubMed  Google Scholar 

  34. Elbakri I, Fessler J. Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Trans Med Imaging. 2002;21(2):89–99.

    Article  PubMed  Google Scholar 

  35. Lasio GM, Whiting BR, Williamson JF. Statistical reconstruction for X-ray computed tomography using energy-integrating detectors. PMB. 2007;52(8):2247.

    Article  Google Scholar 

  36. Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489–509.

    Article  Google Scholar 

  37. Sidky EY, Kao C-M, Pan X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. 2009. https://arxiv.org/abs/0904.4495.

  38. Irwan R, Nakanishi S, Blum A. AIDR 3D-reduces dose and simultaneously improves image quality. Tokyo: Toshiba Medical Systems; 2014. https://www.toshiba-medical.eu/eu/wp-content/uploads/sites/2/2014/10/AIDR-3D-white-paper1.pdf

    Google Scholar 

  39. Pontana F, Duhamel A, Pagniez J, Flohr T, Faivre J-B, Hachulla A-L, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol. 2011;21(3):636–43.

    Article  PubMed  Google Scholar 

  40. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR. 2009;193(3):764–71.

    Article  PubMed  Google Scholar 

  41. Prakash P, Kalra MK, Kambadakone AK, Pien H, Hsieh J, Blake MA, et al. Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Investig Radiol. 2010;45(4):202–10.

    Article  Google Scholar 

  42. Desai G, Thabet A, Elias A, Sahani D. Comparative assessment of three image reconstruction techniques for image quality and radiation dose in patients undergoing abdominopelvic multidetector CT examinations. BJR. 2013;86(1021):20120161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Flicek KT, Hara AK, Silva AC, Wu Q, Peter MB, Johnson CD. Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. AJR. 2010;195(1):126–31.

    Article  PubMed  Google Scholar 

  44. Zhang Z, Seeram E. The use of artificial intelligence in computed tomography image reconstruction—a literature review. J Med Imaging Radiat Sci. 2020;51:671–7. https://doi.org/10.1016/j.jmir.2020.09.001.

    Article  PubMed  Google Scholar 

  45. Lee T, Seeram E. The use of artificial intelligence in computed tomography image reconstruction: a systematic review. Radiology. 2020;4(2):30–8. https://doi.org/10.17140/ROJ-4-129.

    Article  Google Scholar 

  46. Singh R, Wu W, Wang G, Kalra M. Artificial intelligence in image reconstruction: the change is here. Phys Med. 2020;79:113–25.

    Article  PubMed  Google Scholar 

  47. McCollough C, Leng S. Use of artificial intelligence in computed tomography dose optimisation. Ann ICRP. 2020;49(1):113–25. https://doi.org/10.1177/0146645320940827.

    Article  CAS  PubMed  Google Scholar 

  48. Missert A, Yu L, Leng S, Fletcher J, McCollough C. Synthesizing images from multiple kernels using a deep convolutional network. Med Phys. 2020;2:422–30. https://doi.org/10.1002/mp.13918.

    Article  Google Scholar 

  49. Toth TL, Cesmeli E, Ikhlef A, Horiuchi T. Image quality and dose optimization using novel X-ray source filters tailored to patient size. Int Soc Opt Eng. 2005;5745:283–91.

    Google Scholar 

  50. Yu L, Liu X, Leng S, Kofler JM, Ramirez-Giraldo JC, Qu M, et al. Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med. 2009;1(1):65–84.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nicholson R, Fetherston S. Primary radiation outside the imaged volume of a multislice helical CT scan. BJR. 2002;75(894):518–22.

    Article  CAS  PubMed  Google Scholar 

  52. Tzedakis A, Damilakis J, Perisinakis K, Stratakis J, Gourtsoyiannis N. The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Phys. 2005;32(6):1621–9.

    Article  CAS  PubMed  Google Scholar 

  53. Walker MJ, Olszewski ME, Desai MY, Halliburton SS, Flamm SD. New radiation dose saving technologies for 256-slice cardiac computed tomography angiography. Int J Cardiovasc Imaging. 2009;25(2):189–99.

    Article  Google Scholar 

  54. Christner JA, Zavaletta VA, Eusemann CD, Walz-Flannigan AI, McCollough CH. Dose reduction in helical CT: dynamically adjustable z-axis X-ray beam collimation. AJR. 2010;194(1):W49–55.

    Article  PubMed  Google Scholar 

  55. Von der Haar T, Klingenbeck-Regn K, Hupke R. Improvement of CT performance by UFC detector technology. Advances in CT IV. Berlin: Springer; 1998. p. 9–15.

    Google Scholar 

  56. Liu Y, Leng S, Michalak GJ, Vrieze TJ, Duan X, Qu M, et al. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector. J Comput Assist Tomogr. 2014;38(3):398–403.

    Article  PubMed  Google Scholar 

  57. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard J-A, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230(3):619–28.

    Article  PubMed  Google Scholar 

  58. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin N Am. 2009;47(1):27–40.

    Article  PubMed  Google Scholar 

  59. Hendee WR, Ritenour ER. Medical imaging physics. New York: Wiley; 2002.

    Book  Google Scholar 

  60. Bushberg JT, Boone JM. The essential physics of medical imaging. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  61. Li J, Udayasankar UK, Toth TL, Seamans J, Small WC, Kalra MK. Automatic patient centering for MDCT: effect on radiation dose. AJR. 2007;188(2):547–52.

    Article  PubMed  Google Scholar 

  62. Dance DR, Christofides S, Maidment ADA, McLean ID, Ng KH. Diagnostic radiology physics—a handbook for teachers and students. Vienna: IAEA; 2014.

    Google Scholar 

  63. Paulo G, Damilakis J, Tsapaki V, Schegerer A, Repussard J, Jaschke W, Frija G. Diagnostic reference levels based on clinical indications in computed tomography: a literature review. Insights Imaging. 2020;11:96. https://doi.org/10.1186/s13244-020-00899-y.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Public Health England. National Diagnostic Reference Levels (NDRLs). London: Public Health England; 2016.

    Google Scholar 

  65. UKHSA-RCE-1: doses from computed tomography (CT) exams in the UK: 2019 review. 2022.

    Google Scholar 

  66. World Health Organization. Ethics and medical radiological imaging. A policy brief for health-care providers. Geneva: World Health Organization; 2022. https://www.who.int/publications/i/item/9789240047785

    Google Scholar 

  67. World Health Organization. Ethics and governance of artificial intelligence for health. Geneva: World Health Organization; 2021. https://www.who.int/publications/i/item/9789240029200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Trauernicht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trauernicht, C.J. (2023). Dose Optimisation in CT Colonography. In: Bortz, J.H., Ramlaul, A., Munro, L. (eds) CT Colonography for Radiographers. Springer, Cham. https://doi.org/10.1007/978-3-031-30866-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30866-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30865-9

  • Online ISBN: 978-3-031-30866-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics