Skip to main content

The Role of Hyaluronan in Skin Wound Healing

  • Chapter
  • First Online:
Hyaluronan

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 14))

  • 193 Accesses

Abstract

Skin wound healing is a complex process involving many types of cells at different specific times. HA is a linear un-sulfated glycosaminoglycan synthesized by three HA synthases (HAS) and degraded by hyaluronidases. By binding to its receptors on cell surfaces, HA regulates the function of various types of cells at different phases of wound healing. During the first phase of wounding (inflammation phase), levels of HA increase rapidly at the wound site. Platelets cleave HMW-HA into fragments and stimulate the extrinsic clotting cascade, achieving hemostasis. The local accumulation of high molecular weight HA (HMW-HA) promotes diffusion of water molecules and facilitates the migration and infiltration of inflammatory cells into the wound area. Low molecular weight HA (LMW-HA) stimulates the secretion of proinflammatory cytokines, which induces vasodilation and increases vascular permeability, leading to more inflammatory cell migration into the wound and facilitating proinflammatory cascades. During the second (proliferative) and third (remodeling) phases of wound healing, HA has crucial roles in regulating the repair of damaged tissue elements. By binding to its receptors such as CD44, ICAM-1 and RHAMM, HA influences the activities of keratinocytes (re-epithelialization) and fibroblasts (migration, proliferation, fibroblast turnover, myofibroblast differentiation) through modulation of signaling cascades such as the TGF-beta receptor pathway. In diabetes, under hyperglycemic condition, HA and other GAGs are degraded into small fragments and become more proinflammatory, leading to damage and loss of the ECM glycocalyx in small vessels, which has a detrimental effect on endothelial cells. Due to its special physical and chemical characteristics such as good biocompatibility, biodegradability, and water-absorbing properties, HA has been widely used in various types of topical dressings and demonstrates a promising therapeutic function in promoting wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W, Assoian RK, Pure E (2008) Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci 121:1393–1402

    Article  CAS  PubMed  Google Scholar 

  • Anisha BS, Biswas R, Chennazhi KP, Jayakumar R (2013) Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int J Biol Macromol 62:310–320

    Article  CAS  PubMed  Google Scholar 

  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Averbeck M, Gebhardt CA, Voigt S, Beilharz S, Anderegg U, Termeer CC, Sleeman JP, Simon JC (2007) Differential regulation of hyaluronan metabolism in the epidermal and dermal compartments of human skin by UVB irradiation. J Invest Dermatol 127:687–697

    Article  CAS  PubMed  Google Scholar 

  • Aya KL, Stern R (2014) Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen 22:579–593

    Article  PubMed  Google Scholar 

  • Balaji S, King A, Marsh E, LeSaint M, Bhattacharya SS, Han N, Dhamija Y, Ranjan R, Le LD, Bollyky PL, Crombleholme TM, Keswani SG (2015) The role of interleukin-10 and hyaluronan in murine fetal fibroblast function in vitro: implications for recapitulating fetal regenerative wound healing. PLoS One 10:e0124302

    Article  PubMed  PubMed Central  Google Scholar 

  • Boulton AJ (2008) The diabetic foot: grand overview, epidemiology and pathogenesis. Diabetes Metab Res Rev 24(Suppl 1):S3–S6

    Article  PubMed  Google Scholar 

  • Bourguignon LY, Ramez M, Gilad E, Singleton PA, Man MQ, Crumrine DA, Elias PM, Feingold KR (2006) Hyaluronan-CD44 interaction stimulates keratinocyte differentiation, lamellar body formation/secretion, and permeability barrier homeostasis. J Invest Dermatol 126:1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Bruzauskaite I, Bironaite D, Bagdonas E, Bernotiene E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68:355–369

    Article  CAS  PubMed  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Sama D, Calatroni A (2008) The antioxidant effect exerted by TGF-1beta-stimulated hyaluronan production reduced NF-kB activation and apoptosis in human fibroblasts exposed to FeSo4 plus ascorbate. Mol Cell Biochem 311:167–177

    Article  CAS  PubMed  Google Scholar 

  • Chanda A, Adhikari J, Ghosh A, Chowdhury SR, Thomas S, Datta P, Saha P (2018) Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 116:774–785

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound Repair Regen 7:79–89

    Article  CAS  PubMed  Google Scholar 

  • Csoka AB, Scherer SW, Stern R (1999) Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics 60:356–361

    Article  CAS  PubMed  Google Scholar 

  • David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K, Pujol JP (2008) Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 16:274–287

    Article  PubMed  Google Scholar 

  • Delmage JM, Powars DR, Jaynes PK, Allerton SE (1986) The selective suppression of immunogenicity by hyaluronic acid. Ann Clin Lab Sci 16:303–310

    CAS  PubMed  Google Scholar 

  • Deodhar AK, Rana RE (1997) Surgical physiology of wound healing: a review. J Postgrad Med 43:52–56

    CAS  PubMed  Google Scholar 

  • Fahmy HM, Aly AA, Abou-Okeil A (2018) A non-woven fabric wound dressing containing layer - by - layer deposited hyaluronic acid and chitosan. Int J Biol Macromol 114:929–934

    Article  CAS  PubMed  Google Scholar 

  • Fallacara A, Marchetti F, Pozzoli M, Citernesi UR, Manfredini S, Vertuani AS (2018) Formulation and characterization of native and crosslinked hyaluronic acid microspheres for dermal delivery of sodium Ascorbyl phosphate: a comparative study. Pharmaceutics 10:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg RN, Beebe DC (1983) Hyaluronate in vasculogenesis. Science 220:1177–1179

    Article  CAS  PubMed  Google Scholar 

  • Ferguson EL, Roberts JL, Moseley R, Griffiths PC, Thomas DW (2011) Evaluation of the physical and biological properties of hyaluronan and hyaluronan fragments. Int J Pharm 420:84–92

    Article  CAS  PubMed  Google Scholar 

  • Fiorica C, Palumbo FS, Pitarresi G, Bongiovi F, Giammona G (2017) Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbohydr Polym 166:281–290

    Article  CAS  PubMed  Google Scholar 

  • Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33

    Article  CAS  PubMed  Google Scholar 

  • Frost SJ, Weigel PH (1990) Binding of hyaluronic acid to mammalian fibrinogens. Biochim Biophys Acta 1034:39–45

    Article  CAS  PubMed  Google Scholar 

  • Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  CAS  PubMed  Google Scholar 

  • Govindaraju P, Todd L, Shetye S, Monslow J, Pure E (2019) CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol 75-76:314–330

    Article  CAS  PubMed  Google Scholar 

  • Graca MFP, Miguel SP, Cabral CSD, Correia IJ (2020) Hyaluronic acid-based wound dressings: a review. Carbohydr Polym 241:116364

    Article  CAS  PubMed  Google Scholar 

  • Hall CL, Collis LA, Bo AJ, Lange L, McNicol A, Gerrard JM, Turley EA (2001) Fibroblasts require protein kinase C activation to respond to hyaluronan with increased locomotion. Matrix Biol 20:183–192

    Article  CAS  PubMed  Google Scholar 

  • Hall CL, Lange LA, Prober DA, Zhang S, Turley EA (1996) pp60(c-src) is required for cell locomotion regulated by the hyaluronanreceptor RHAMM. Oncogene 13:2213–2224

    CAS  PubMed  Google Scholar 

  • Hardwick C, Hoare K, Owens R, Hohn HP, Hook M, Moore D, Cripps V, Austen L, Nance DM, Turley EA (1992) Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol 117:1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Hascall VC (2000) Hyaluronan, a common thread. Glycoconj J 17:607–616

    Article  CAS  PubMed  Google Scholar 

  • Itano N, Kimata K (2002) Mammalian hyaluronan synthases. IUBMB Life 54:195–199

    Article  CAS  PubMed  Google Scholar 

  • Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092

    Article  CAS  PubMed  Google Scholar 

  • Jeffcoate WJ, Harding KG (2003) Diabetic foot ulcers. Lancet 361:1545–1551

    Article  PubMed  Google Scholar 

  • Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by toll-like receptors and hyaluronan. Nat Med 11:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Jordan AR, Racine RR, Hennig MJ, Lokeshwar VB (2015) The role of CD44 in disease pathophysiology and targeted treatment. Front Immunol 6:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaul A, Short WD, Wang X, Keswani SG (2021) Hyaluronidases in human diseases. Int J Mol Sci 22(6):3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenar H, Ozdogan CY, Dumlu C, Doger E, Kose GT, Hasirci V (2019) Microfibrous scaffolds from poly(l-lactide-co-epsilon-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications. Mater Sci Eng C Mater Biol Appl 97:31–44

    Article  CAS  PubMed  Google Scholar 

  • Lauer ME, Glant TT, Mikecz K, DeAngelis PL, Haller FM, Husni ME, Hascall VC, Calabro A (2013) Irreversible heavy chain transfer to hyaluronan oligosaccharides by tumor necrosis factor-stimulated gene-6. J Biol Chem 288:205–214

    Article  CAS  PubMed  Google Scholar 

  • Lennon FE, Singleton PA (2011) Hyaluronan regulation of vascular integrity. Am J Cardiovasc Dis 1:200–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longaker MT, Adzick NS (1991) The biology of fetal wound healing: a review. Plast Reconstr Surg 87:788–798

    Article  CAS  PubMed  Google Scholar 

  • Mack JA, Abramson SR, Ben Y, Coffin JC, Rothrock JK, Maytin EV, Hascall VC, Largman C, Stelnicki EJ (2003) Hoxb13 knockout adult skin exhibits high levels of hyaluronan and enhanced wound healing. FASEB J 17:1352–1354

    Article  CAS  PubMed  Google Scholar 

  • Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, Maytin EV (2012) Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Invest Dermatol 132:198–207

    Article  CAS  PubMed  Google Scholar 

  • Maytin EV, Chung HH, Seetharaman VM (2004) Hyaluronan participates in the epidermal response to disruption of the permeability barrier in vivo. Am J Pathol 165:1331–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride WH, Bard JB (1979) Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med 149:507–515

    Article  CAS  PubMed  Google Scholar 

  • Meran S, Luo DD, Simpson R, Martin J, Wells A, Steadman R, Phillips AO (2011) Hyaluronan facilitates transforming growth factor-beta1-dependent proliferation via CD44 and epidermal growth factor receptor interaction. J Biol Chem 286:17618–17630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, Phillips AO (2008) Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J Biol Chem 283:6530–6545

    Article  CAS  PubMed  Google Scholar 

  • Mikecz K, Brennan FR, Kim JH, Glant TT (1995) Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nat Med 1:558–563

    Article  CAS  PubMed  Google Scholar 

  • Milner CM, Day AJ (2003) TSG-6: a multifunctional protein associated with inflammation. J Cell Sci 116:1863–1873

    Article  CAS  PubMed  Google Scholar 

  • Monslow J, Sato N, Mack JA, Maytin EV (2009) Wounding-induced synthesis of hyaluronic acid in organotypic epidermal cultures requires the release of heparin-binding egf and activation of the EGFR. J Invest Dermatol 129:2046–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Motte C, Nigro J, Vasanji A, Rho H, Kessler S, Bandyopadhyay S, Danese S, Fiocchi C, Stern R (2009) Platelet-derived hyaluronidase 2 cleaves hyaluronan into fragments that trigger monocyte-mediated production of proinflammatory cytokines. Am J Pathol 174:2254–2264

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Yokohama S, Yoneda M, Okamoto S, Tamaki Y, Ito T, Okada M, Aso K, Makino I (2004) High, but not low, molecular weight hyaluronan prevents T-cell-mediated liver injury by reducing proinflammatory cytokines in mice. J Gastroenterol 39:346–354

    Article  CAS  PubMed  Google Scholar 

  • Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, Kastelein JJ, Stroes ES (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486

    Article  CAS  PubMed  Google Scholar 

  • Oksala O, Salo T, Tammi R, Hakkinen L, Jalkanen M, Inki P, Larjava H (1995) Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem 43:125–135

    Article  CAS  PubMed  Google Scholar 

  • Orellana SL, Giacaman A, Pavicic F, Vidal A, Moreno-Villoslada I, Concha M (2016) Relevance of charge balance and hyaluronic acid on alginate-chitosan sponge microstructure and its influence on fibroblast growth. J Biomed Mater Res A 104:2537–2543

    Article  CAS  PubMed  Google Scholar 

  • Orian-Rousseau V (2015) CD44 acts as a signaling platform controlling tumor progression and metastasis. Front Immunol 6:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardue EL, Ibrahim S, Ramamurthi A (2008) Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis 4:203–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Passi A, Sadeghi P, Kawamura H, Anand S, Sato N, White LE, Hascall VC, Maytin EV (2004) Hyaluronan suppresses epidermal differentiation in organotypic cultures of rat keratinocytes. Exp Cell Res 296:123–134

    Article  CAS  PubMed  Google Scholar 

  • Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    Article  CAS  PubMed  Google Scholar 

  • Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276:19420–19430

    Article  CAS  PubMed  Google Scholar 

  • Reed RK, Lilja K, Laurent TC (1988) Hyaluronan in the rat with special reference to the skin. Acta Physiol Scand 134:405–411

    Article  CAS  PubMed  Google Scholar 

  • Rilla K, Pasonen-Seppanen S, Rieppo J, Tammi M, Tammi R (2004) The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol 123:708–714

    Article  CAS  PubMed  Google Scholar 

  • Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A (2001) Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 281:E924–E930

    Article  CAS  PubMed  Google Scholar 

  • Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638

    Article  CAS  PubMed  Google Scholar 

  • Shakya S, Mack JA, Alipour M, Maytin EV (2020) Cutaneous wounds in mice lacking TSG-6 exhibit delayed closure and an abnormal inflammatory response. J Invest Dermatol 140:2505–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya S, Wang Y, Mack JA, Maytin EV (2015) Hyperglycemia-induced changes in Hyaluronan contribute to impaired skin wound healing in diabetes: review and perspective. Int J Cell Biol 2015:701738

    Article  PubMed  PubMed Central  Google Scholar 

  • Shatirishvili M, Burk AS, Franz CM, Pace G, Kastilan T, Breuhahn K, Hinterseer E, Dierich A, Bakiri L, Wagner EF, Ponta H, Hartmann TN, Tanaka M, Orian-Rousseau V (2016) Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis 7:e2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin YC, Shin DM, Lee EJ, Lee JH, Kim JE, Song SH, Hwang DY, Lee JJ, Kim B, Lim D, Hyon SH, Lim YJ, Han DW (2016) Hyaluronic acid/PLGA Core/Shell fiber matrices loaded with EGCG beneficial to diabetic wound healing. Adv Healthc Mater 5:3035–3045

    Article  CAS  PubMed  Google Scholar 

  • Shirali AC, Goldstein DR (2008) Activation of the innate immune system by the endogenous ligand hyaluronan. Curr Opin Organ Transplant 13:20–25

    Article  PubMed  Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  • Singleton PA, Mirzapoiazova T, Guo Y, Sammani S, Mambetsariev N, Lennon FE, Moreno-Vinasco L, Garcia JG (2010) High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness. Am J Physiol Lung Cell Mol Physiol 299:L639–L651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltes L, Mendichi R, Kogan G, Schiller J, Stankovska M, Arnhold J (2006) Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 7:659–668

    Article  CAS  PubMed  Google Scholar 

  • Spicer AP, Seldin MF, Olsen AS, Brown N, Wells DE, Doggett NA, Itano N, Kimata K, Inazawa J, McDonald JA (1997) Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 41:493–497

    Article  CAS  PubMed  Google Scholar 

  • Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Ma H, Wu Z, Zeng H, Li Z, Wang Y, Liu G, Xu B, Lin Y, Zhang P, Wei X (2014) Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater Sci Eng C Mater Biol Appl 44:440–448

    Article  CAS  PubMed  Google Scholar 

  • Tammi R, Pasonen-Seppanen S, Kolehmainen E, Tammi M (2005) Hyaluronan synthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol 124:898–905

    Article  CAS  PubMed  Google Scholar 

  • Tammi R, Ripellino JA, Margolis RU, Tammi M (1988) Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J Invest Dermatol 90:412–414

    Article  CAS  PubMed  Google Scholar 

  • Tammi R, Saamanen AM, Maibach HI, Tammi M (1991) Degradation of newly synthesized high molecular mass hyaluronan in the epidermal and dermal compartments of human skin in organ culture. J Invest Dermatol 97:126–130

    Article  CAS  PubMed  Google Scholar 

  • Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK (2019) Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 286:2883–2908

    Article  CAS  PubMed  Google Scholar 

  • Tolg C, Hamilton SR, Nakrieko KA, Kooshesh F, Walton P, McCarthy JB, Bissell MJ, Turley EA (2006) Rhamm−/− fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair. J Cell Biol 175:1017–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lauer ME, Anand S, Mack JA, Maytin EV (2014) Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J Biol Chem 289:32253–32265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Mack JA, Maytin EV (2019) CD44 inhibits alpha-SMA gene expression via a novel G-actin/MRTF-mediated pathway that intersects with TGFbetaR/p38MAPK signaling in murine skin fibroblasts. J Biol Chem 294:12779–12794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Qian Y, Li L, Pan L, Njunge LW, Dong L, Yang L (2016) Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. J Biomater Appl 30:686–698

    Article  CAS  PubMed  Google Scholar 

  • Webber J, Jenkins RH, Meran S, Phillips A, Steadman R (2009) Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan. Am J Pathol 175:148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel PH, Frost SJ, McGary CT, LeBoeuf RD (1988) The role of hyaluronic acid in inflammation and wound healing. Int J Tissue React 10:355–365

    CAS  PubMed  Google Scholar 

  • Weigel PH, Fuller GM, LeBoeuf RD (1986) A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol 119:219–234

    Article  CAS  PubMed  Google Scholar 

  • West DC, Kumar S (1989) Hyaluronan and angiogenesis. Ciba Found Symp 143:187–201. discussion 201-187, 281-185

    CAS  PubMed  Google Scholar 

  • Xu H, Wan H, Zuo W, Sun W, Owens RT, Harper JR, Ayares DL, McQuillan DJ (2009) A porcine-derived acellular dermal scaffold that supports soft tissue regeneration: removal of terminal galactose-alpha-(1,3)-galactose and retention of matrix structure. Tissue Eng Part A 15:1807–1819

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhang B, Liu X, Shi L, Zhu J, Wei D, Zhong J, Sun G, He D (2016) Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydr Polym 143:301–309

    Article  CAS  PubMed  Google Scholar 

  • Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C (2005) Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol (1985) 99:1471–1476

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward V. Maytin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Maytin, E.V. (2023). The Role of Hyaluronan in Skin Wound Healing. In: Passi, A. (eds) Hyaluronan. Biology of Extracellular Matrix, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-30300-5_9

Download citation

Publish with us

Policies and ethics