Skip to main content

Control of Fasciolosis-Transmitting Lymnaeids in the Field

  • Chapter
  • First Online:
The Lymnaeidae

Part of the book series: Zoological Monographs ((ZM,volume 7))

Abstract

The objective of this chapter is to review the different methods for field control of host snails involved in the transmission of fasciolosis. Environmental measures such as drainage of swampy soils or cutting of vegetation in watercourses can reduce the number of snails. Synthetic molluscicides are being used less and less because of their cost, toxicity, and contamination they cause in the environment. Conversely, research on plant extracts is being developed because many of them are natural molluscicides that are less toxic and more environmentally friendly. In the nature, several groups of vertebrates and invertebrates predate lymnaeids and a control technique of Galba truncatula has been developed in central France using predation by the terrestrial snail Zonitoides nitidus. Biological control can be performed using animal species which compete with lymnaeids for food. Pathogens such as parasites and other infectious agents can also be used. Finally, an integrated liver fluke control strategy for the control of liver fluke, associating deworming of the definitive hosts and control of host snails, is analysed with a review of results provided by this type of control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abreu Guirado OA, Pérez MP, Diéguez Fernández L et al (2019) Effecto molusquicida del fruto de Sapindus saponaria sobre Galba cubensis, hospedero intermediario de fasciolosis en Cuba. Rev Prod Anim 31:47–54

    Google Scholar 

  • Agrahari P, Singh DK (2012) Seasonal variation in abiotic factors and ferulic acid toxicity in snail-attractant pellets against the intermediate host snail Lymnaea acuminata. Zoonoses Public Health 60:478–486

    Article  PubMed  Google Scholar 

  • Ahmed AH, Ramzy RM (1997) Laboratory assessment of the molluscicidal and cercaricidal activities of the Egyptian weed, Solanum nigrum L. Ann Trop Med Parasitol 91:931–937

    Article  CAS  PubMed  Google Scholar 

  • Alda P, Lounnas M, Vázquez AA et al (2021) Systematics and geographical distribution of Galba species, a group of cryptic and worldwide freshwater snails. Mol Phylogenet Evol 157:107035. https://doi.org/10.1016/j.ympev.2020.107035

    Article  PubMed  Google Scholar 

  • Andrews P, Thyssen J, Lorke D (1983) The biology and toxicology of molluscicides, Bayluscide. Pharmacol Ther 19:245–295

    Article  CAS  Google Scholar 

  • Archibald RG (1933) The use of the fruit of the tree Balanites aegyptiaca in the control of schistosomiasis in The Sudan. Trans R Soc Trop Med Hyg 27:207–210

    Article  Google Scholar 

  • Arostegui MC, Wood CL, Jones IJ et al (2019) Potential biological control of schistosomiasis by fishes in the lower Senegal River basin. Am J Trop Med Hyg 100:117–126

    Article  CAS  PubMed  Google Scholar 

  • Barker GM (2016) Marisa cornuarietis (giant ramshorn). https://www.cabi.org/isc/datasheet/32526e. Accessed 22 October 2020

  • Barkia H, Barkia A, Nhammi H et al (2011) La schistosomiase au Maroc: de sa découverte à l’après-élimination. East Med Health J 17:250–256

    Article  CAS  Google Scholar 

  • Barthe D, Rondelaud D, Faucher Y et al (1984) Infection virale chez le Mollusque Pulmoné Lymnaea truncatula Müller. C R Acad Sci Ser III Sci Vie 298:513–515

    Google Scholar 

  • Belkacemi M, Jana M (2006) Curage et traitement molluscicide pour la lutte contre la schistosomiase. East Med Health J 12:129–136

    CAS  Google Scholar 

  • Ben-Ami F, Heller J (2001) Biological control of aquatic pest snails by the black carp Mylopharyngodon piceus. Biol Control 22:131–136

    Article  Google Scholar 

  • Berg CO (1964) Snail control in trematode diseases: the possible value of sciomyzid larvae, snail-killing Diptera. Adv Parasitol 2:259–309

    Article  CAS  PubMed  Google Scholar 

  • Blann KL, Anderson JL, Sands GR et al (2009) Effects of agricultural drainage on aquatic ecosystems: a review. Crit Rev Environ Sci Technol 39:909–1001

    Article  CAS  Google Scholar 

  • Boelee E, Laamrani H (2004) Environmental control of schistosomiasis through community participation in a Moroccan oasis. Trop Med Int Health 9:997–1004

    Article  PubMed  Google Scholar 

  • Boray JC (1978) The potential impact of exotic Lymnaea spp. on fascioliasis in Australasia. Vet Parasitol 4:127–141

    Article  Google Scholar 

  • Brackenbury TD, Appleton CC (1993) Recolonization of the Umsindusi River, Natal, South Africa, by the invasive gastropod, Physa acuta (Basommatophora, Physidae). J Med Appl Malacol 5:39–44

    Google Scholar 

  • Brönmark C (1992) Leech predation on juvenile freshwater snails: effects of size, species and substrate. Oecologia 91:526–529

    Article  PubMed  Google Scholar 

  • Brouwer C, Goffeau A, Heibloem M (1985) Irrigation water management: training manual no. 1 - introduction to irrigation. FAO, Roma, Italy

    Google Scholar 

  • Brown KM (1982) Resource overlap and competition in pond snails: an experimental analysis. Ecology 63:412–422

    Article  Google Scholar 

  • Brown DS (1994) Freshwater snails of Africa and their medical importance. Taylor & Francis, London. https://doi.org/10.1201/9781482295184

    Book  Google Scholar 

  • Buse AB (1971) Population dynamics of Chaetogaster limnaei vaghini Gruffydd (Oligochaeta) in a field population of Lymnaea stagnalis L. Oikos 22:50–55

    Article  Google Scholar 

  • Bustinduy AL, King CH (2014) Schistosomiasis. In: Farrar J, Hotex P, Junghanss T et al (eds) Manson’s tropical diseases. Elsevier, New York, pp 698–725

    Chapter  Google Scholar 

  • Cao ZG, Wang TP, Zhang SQ (2012) Experimental study on the resistance of Oncomelania snails to niclosamide. J Pathog Biol 7:352–353

    Google Scholar 

  • Chaturvedi D, Soni N, Singh VK (2021) Ethnobotanical molluscicides. Eur J Biol Res 11:417–433

    CAS  Google Scholar 

  • Chauhan S, Singh A (2009) Molluscicidal potential of Lantana indica and Alstonia scholaris plants against freshwater snail Lymnaea acuminata. Internet J Toxicol 7:2. https://doi.org/10.5580/18cb

    Article  Google Scholar 

  • Chawech R, Njeh F, Hamed N et al (2017) A study of the molluscicidal and larvicidal activities of Citrullus colocynthis (L.) leaf extract and its main cucurbitacins against the mollusc Galba truncatula, intermediate host of Fasciola hepatica. Pest Manag Sci 73:1473–1477

    Article  CAS  PubMed  Google Scholar 

  • Chen C (2003) Molluscicides and their application in China (in Chinese). Chin J Schistosomiasis Control 2003:321–322

    Google Scholar 

  • Chen MG, Mott KE (1990) Progress in assessment of morbidity due to Fasciola hepatica infection: a review of recent literature. Trop Dis Bull 87:R1–R38

    Google Scholar 

  • Chiotha SS, McKaye HR, Stauffer Jr (1991) Use of indigenous fishes to control schistosome snail vectors in Malaŵi, Africa. Biol Control 1:316–319

    Article  Google Scholar 

  • Claxton JR, Zambrano H, Ortiz P (1998) Strategic control of fasciolosis in the inter-Andean valley of Cajamarca, Peru. Vet Rec 143:42–45

    Article  CAS  PubMed  Google Scholar 

  • Coelho PMZ, Caldeira RL (2016) Critical analysis of molluscicide application in schistosomiasis control programs in Brazil. Infect Dis Poverty 5:57. https://doi.org/10.1186/s40249-016-0153-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Cope NJ, Winterbourn MJ (2004) Competitive interactions between two successful molluscan invaders of freshwaters: an experimental study. Aquat Ecol 38:83–91

    Article  Google Scholar 

  • Cruz-Reyes A, Chavarin C, Campos Arias MP et al (1989) Actividad molusquicida del Piquerol A aislado de Piqueria trinervia (compositae) sobre ocho especies de caracoles pulmonados. Mem Inst Oswaldo Cruz 84:35–40

    Article  CAS  PubMed  Google Scholar 

  • Dai JR, Wang W, Liang YS et al (2008) A novel molluscicidal formulation of niclosamide. Parasitol Res 103:405–412

    Article  PubMed  Google Scholar 

  • Dai JR, Li YZ, Wang W et al (2015) Resistance to niclosamide in Oncomelania hupensis, the intermediate host of Schistosoma japonicum: should we be worried? Parasitology 142:332–340

    Article  CAS  PubMed  Google Scholar 

  • Dawson VK (2003) Environmental fate and effects of the lampricide Bayluscide: a review. J Great Lakes Res 29:475–492

    Article  CAS  Google Scholar 

  • de Oliveira EJ, Rabinovitch L, Monnerat R et al (2004) Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol 70:6657–6664

    Article  PubMed  PubMed Central  Google Scholar 

  • Demian ES, Lutfy RG (1965) Predatory activity of Marisa cornuarietis against Biomphalaria alexandrina under laboratory conditions. Ann Trop Med Parasitol 59:337–339

    Article  Google Scholar 

  • Demian ES, Lutfy RG (1966) Factors affecting the predation of Marisa cornuarietis on Bulinus (B.) truncatus, Biomphalaria alexandrina and Lymnaea caillaudi. Oikos 17:212–230

    Article  Google Scholar 

  • Didier B (1986) Contribution à l'étude écologique et écophysiologique d'un mollusque prédateur, Zonitoides nitidus Müller. PhD Thesis, University of Limoges

    Google Scholar 

  • Didier B, Rondelaud D (1989a) Premières données sur le régime alimentaire de Zonitoides nitidus Müller (Mollusque, Gastéropode, Pulmoné). Bull Soc Hist Nat Toulouse 125:55–60

    Google Scholar 

  • Didier B, Rondelaud D (1989b) Les caractéristiques des proies consommées par le mollusque Zonitoides nitidus Müller et leur dynamique en juin, juillet et août. Bull Soc Hist Nat Toulouse 125:111–117

    Google Scholar 

  • Dillon RT Jr (2004) The ecology of freshwater molluscs (Cambridge studies on ecology). Cambridge University Press, Cambridge, pp. 509

    Google Scholar 

  • Dreyfuss G, Vignoles P, Rondelaud D (2002) Les larves de Diptères Sciomyzidae dans le département de la Haute-Vienne. Leur impact sur le système Galba truncatula-Fasciola hepatica. Ann Sci Limousin 13:39–46

    Google Scholar 

  • Dreyfuss G, Vignoles P, Mekroud A et al (2006) The presence of uninfected Omphiscola glabra in a breeding of infected Galba truncatula enhanced the characteristics of snail infections with Fasciola hepatica. Parasitol Res 99:197–199

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss G, Vignoles P, Rondelaud D et al (2015) The mud snail (Galba truncatula). Ecology, parasitism and control. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  • Duarte GF, Rodrigues J, Fernandes EKK et al (2015) New insights into the amphibious life of Biomphalaria glabrata and susceptibility of its egg masses to fungal infection. J Invertebr Pathol 125:31–36

    Article  PubMed  Google Scholar 

  • Duval D, Galinier R, Mouahid G et al (2015) A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control? PLoS Negl Trop Dis 9:e0003489. https://doi.org/10.1371/journal.pntd.0003489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hassan AA (1974) Helisoma tenuis and Physa acuta snails as biological means of control against Bulinus truncatus and Biomphalaria alexandrina. In: Proceedings of the Third International Congress of Parasitology, München, 25–31 August 1974 3:1597–1598

    Google Scholar 

  • Estuningsih SE (1991) Studies on trematodes infecting Lymnaea rubiginosa in West Java. MSc Thesis, James Cook University of North Queensland

    Google Scholar 

  • Estuningsih SE (1998) Studi tentang penggunaan larva cacing Echinostoma revolutum sebagai agen kontrol biologis cacing Fasciola gigantica. Jurnal Ilmu Ternak dan Veteriner 3:129–134

    Google Scholar 

  • Euzeby J (1971) Les maladies vermineuses et leurs incidences sur la pathologie humaine. Volume II: Maladies dues aux Plathelminthes. Part 2: Trématodes. Book 1: Généralités. Distomatoses hépato-biliaires. Vigot frères, Paris

    Google Scholar 

  • Fashuyi SA, Williams MO (1977) The role of Chaetogaster limnaei in the dynamics of trematode transmission in natural populations of freshwater snails. Z Parasitenkd 54:55–60

    Article  CAS  PubMed  Google Scholar 

  • Fried B, Peoples RC, Saxton TM et al (2008) The association of Zygocotyle lunata and Echinostoma trivolvis with Chaetogaster limnaei, an ectosymbiont of Helisoma trivolvis. J Parasitol 94:553–554

    Article  PubMed  Google Scholar 

  • Gamalat YO, Ahmed MM, Ahmed AK et al (2011) Biological studies on Biomphalaria alexandrina snails treated with Furcraea selloa marginata plant (family: Agavaceae) and Bacillus thuringiensis kurstaki (Dipel-2x). J Appl Pharm Sci 1:47–55

    Google Scholar 

  • Gamalat YO, Ahmed MM, Ahmed AK et al (2013) Biological and biochemical impacts of the fungal extract of Aspergillus fumigatus on Biomphalaria alexandrina snails infected with Schistosoma mansoni. Res Rev Biosci 7:473–484

    Google Scholar 

  • Gayral P, Cavier R (1977) Actualité et perspectives d’avenir des molluscicides. Actual Chim Thér 5:179–209

    Google Scholar 

  • Ghouaidia N, Hammami H (2013) Interaction between the intermediate host of fascioliasis in Tunisia, Galba truncatula and a possible competitor, Melanoides tuberculata (Muller, 1774): a field study. Afr J Ecol 52:328–333

    Google Scholar 

  • Graber M, Euzéby J (1975) Lutte biologique contre les mollusques vecteurs de trématodoses humaines et animales. Etude de l’action compétitive de Physa acuta Draparnaud à l’égard de Biomphalaria glabrata Say. Bull Soc Sci Vet Med Comp 5:321–324

    Google Scholar 

  • Hamed N, Njeh F, Damak M et al (2015) Molluscicidal and larvicidal activities of Atriplex inflata aerial parts against the mollusk Galba truncatula, intermediate host of Fasciola hepatica. Rev Inst Med Trop São Paulo 57:473–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammami H, Mezghani-Jarraya R, Damak M et al (2011) Molluscicidal activity of various solvent extracts from Solanum nigrum var. villosum L. aerial parts against Galba truncatula. Parasite 18:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond JA, Fielding D, Nuru H (1994) Eucalyptus: a sustainable self-delivery molluscicide? Vet Res Commun 18:359–365

    Article  CAS  PubMed  Google Scholar 

  • Haseeb MA, Fried B (1997) Modes of transmission of trematode infections and their control. In: Fried B, Graczyk TK (eds) Advances in trematode biology. CRC Press, Boca Raton, FL, pp 31–56

    Google Scholar 

  • He JX, Wang H, Wu MY et al (2007) Observation on the molluscicidal effect of niclosamide ethanolamine salt dustable powder by dusting in fields. J Trop Dis Parasitol 5:153–154. (In Chinese)

    Google Scholar 

  • He P, Wang W, Sanogo B et al (2017) Molluscicidal activity and mechanism of toxicity of a novel salicylanilide ester derivative against Biomphalaria species. Parasit Vectors 10:383. https://doi.org/10.1186/s13071-017-2313-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoa KE, Lie KJ, Yong OYC (1970) Predation of sporocysts of Fasciola gigantica by rediae of Echinostoma audyi. Southeast Asian J Trop Med Public Health 1:429

    Google Scholar 

  • Hourdin P, Rondelaud D, Cabaret J (1990) Interactions entre Fasciola hepatica L. et Muellerius capillaris Müller chez le mollusque Lymnaea truncatula Müller. Bull Soc Fr Parasitol 8:111–118

    Google Scholar 

  • Hourdin P, Rondelaud D, Cabaret J (1991) Initial studies on infection of Lymnaea truncatula by Muellerius capillaris and by Neostrongylus linearis (Nematoda: Protostrongylidae). Parasitol Res 77:273–274

    Article  Google Scholar 

  • Hull J (2017) Ducks and the control of liver fluke in sheep. Vet Rec 181:270–271

    Article  PubMed  Google Scholar 

  • Hurtrez-Boussès S, Meunier C, Durand P et al (2001) Dynamics of host–parasite interactions: the example of population biology of the liver fluke (Fasciola hepatica). Microbes Infect 3:841–849

    Article  PubMed  Google Scholar 

  • Ibrahim MM (2007) Population dynamics of Chaetogaster limnaei (Oligochaeta: Naididae) in the field populations of freshwater snails and its implications as a potential regulator of trematode larvae community. Parasitol Res 101:25–33

    Article  PubMed  Google Scholar 

  • Ibrahim AM, Khalil MT, Mubarak FM (1995) On the feeding behavior of the exotic crayfish Procambarus clarkii in Egypt and its prospects in the biocontrol of local vector snails. J Union Arab Biol 4:321–340

    Google Scholar 

  • Ismail M, Sedek MN, El-Said KM et al (2019) Effect of water bodies on the efficacy of molluscicides against Biomphalaria alexandrina snails with emphasis to their integrated control measures. Egypt J Aquat Biol Fish 23:267–283

    Article  Google Scholar 

  • Jaiswal P, Singh DK (2009) Molluscicidal activity of nutmeg and mace (Myristica fragrans Houtt.) against the vector snail Lymnaea acuminata. Int J Geogr Inf Syst 15:177–186

    Google Scholar 

  • Jimoh AA, Clarke EO, Whenu OO et al (2011) Food and feeding habits of the African river prawn (Macrobrachium vollenhovenii, Herklots, 1857) in Epe lagoon, Southwest Nigeria. Int J Fish Aquac 3:10–15

    Google Scholar 

  • Kariuki HC, Madsen H, Ouma JH et al (2013) Long term study on the effect of mollusciciding with niclosamide in stream habitats on the transmission of schistosomiasis mansoni after community-based chemotherapy in Makueni District, Kenya. Parasites Vectors 6:107. https://doi.org/10.1186/1756-3305-6-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap S, Khagta S, Guleria K et al (2019) Plants as molluscicides: a recent update. Int J Bot Stud 4:50–56

    Google Scholar 

  • Kendall SB (1965) Relationships between the species of Fasciola and their molluscan hosts. Adv Parasitol 3:59–98

    Article  CAS  PubMed  Google Scholar 

  • Khallaayoune K, Madsen H, Laamrani H (1998) Evaluation of three methods to control Bulinus truncatus, the intermediate host of Schistosoma haematobium in an irrigation scheme, Tessaout-Amont, Morocco. Acta Trop 69:61–63

    Article  Google Scholar 

  • Khanous L, Allah SK, Hamdi B et al (2017) Antifungal, molluscicidal and larvicidal assessment of anemonin and Clematis flammula L. extracts against mollusc Galba truncatula, intermediate host of Fasciola hepatica in Tunisia. Asian Pac J Trop Med 10:967–973

    Article  PubMed  Google Scholar 

  • Kloos H, McCullough FS (1982) Plant molluscicides. J Med Plant Res 46:195–209

    Article  CAS  Google Scholar 

  • Kloos H, McCullough FS (1987) Plants with recognized molluscicidal activity. In: Mott KE (ed) Plant molluscicides. Wiley, New York, pp 45–108

    Google Scholar 

  • Knutson LV, Vala JC (2011) Biology of snail-killing Sciomyzidae flies. Cambridge University Press, Cambridge

    Google Scholar 

  • Laamrani H, Khallaayoune K, Boelee E et al (2001) Evaluation of environmental methods to control snails in an irrigation system in Central Morocco. Tropical Med Int Health 5:545–552

    Article  Google Scholar 

  • Lardans V, Dissous C (1998) Snail control strategies for reduction of schistosomiasis transmission. Parasitol Tod 14:413–417

    Article  CAS  Google Scholar 

  • Levêque C (1990) Impact de la lutte antivectorielle sur l’environnement aquatique. Ann Parasitol Hum Comp 65(Suppl. 1):119–124

    Article  PubMed  Google Scholar 

  • Lim HK, Heyneman D (1972) Intramolluscan inter-trematode antagonism: a review of factors influencing the host-parasite system and its possible role in biological control. Adv Parasitol 10:191–268

    Article  CAS  PubMed  Google Scholar 

  • Madsen H, Daffalla AA, Karoum KO et al (1988) Distribution of freshwater snails in irrigation schemes in The Sudan. J Appl Ecol 25:854–866

    Article  Google Scholar 

  • Mage C, Rondelaud D (1983) Réflexions sur la prévention de la fasciolose en France. Dossiers de l'Elevage 5:25–28

    Google Scholar 

  • Mage C, Reynal P, Rondelaud D et al (1989) Mise en pratique du contrôle de l'infestation par Fasciola hepatica chez des bovins limousins. Bulletin des Groupements Techniques Vétérinaires 347:5–10

    Google Scholar 

  • Mage C, Mauran A, Moisset M (1995) Contrôle de l’infestation de la Grande Douve des bovins: une organisation et une application en fermes. Bulletin des Groupements Techniques Vétérinaires 506:11–17

    Google Scholar 

  • Martins R, Alves R (2010) Occurrence of Chaetogaster limnaei K. von Baer, 1927 (Oligochaeta, Naididae) associated with Gastropoda mollusks in horticultural channels in southeastern Brazil. Braz J Biol 70:1055–1057

    Article  CAS  PubMed  Google Scholar 

  • Mas-Coma S, Valero MA, Bargues MD (2009) Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv Parasitol 69:41–146

    Article  PubMed  Google Scholar 

  • McCullough FS, Gayral P, Duncan J et al (1980) Les molluscicides dans la lutte contre la schistosomiase. Bull World Health Org 59:17–26

    Google Scholar 

  • Medina FM, Ritchie LS (1980) Molluscicidal activity of the Puerto Rican weed, Solanum nodiflorum, against snail hosts of Fasciola hepatica. Econ Bot 34:368–375

    Article  Google Scholar 

  • Medina FM, Woodbury R (1979) Terrestrial plants molluscicidal to lymnaeid hosts of fascioliasis hepatica in Puerto Rico. J Agric Univ Puerto Rico 63:366–376

    Google Scholar 

  • Mehl S (1932) Die Lebensbedingungen der Leberegelschnecke (Galba truncatula Müller). Untersuchungen über Schale, Verbreitung, Lebensgeschichte, natürliche Feinde und Bekämpfungsmöglichkeiten. Arbeiten aus der Bayerischen Landesanstalt für Pflanzenbau und Pflanzenschutz 2:1–177

    Google Scholar 

  • Mezghani-Jarraya R, Hammami H, Ayadi A et al (2009) Molluscicidal activity of Hammada scoparia (Pomel) Iljin leaf extracts and the principal alkaloids isolated from them against Galba truncatula. Mem Inst Oswaldo Cruz 104:1035–1038

    Article  CAS  PubMed  Google Scholar 

  • Michelson E (1957) Study on the biological control of schistosome bearing snails. Predators and parasites of freshwater Mollusca: a review of the literature. Parasitology 47:413–426

    Article  CAS  PubMed  Google Scholar 

  • Michelson E (1964) The protective action of Chaetogaster limnaei on snails exposed to Schistosoma mansoni. J Parasitol 50:441–444

    Article  CAS  PubMed  Google Scholar 

  • Mkoji GM, Njunge K, Kimani G et al (1989) Molluscicidal activity of Solanum aculeatum (family: Solanaceae) berries against Biomphalaria pfeifferi, Bulinus globosus and Lymnaea natalensis. Trop Med Parasitol 40:119–120

    CAS  PubMed  Google Scholar 

  • Mkoji GM, Mungai BN, Hofkin BV et al (1992) Does the snail Melanoides tuberculata have a role in biological control of Biomphalaria pfeifferi and other medically important African pulmonates? Ann Trop Med Parasitol 86:201–204

    Article  CAS  PubMed  Google Scholar 

  • Mkoji GM, Hofkin BV, Kuris AM et al (1999) Impact of the crayfish Procambarus clarkii on Schistosoma haematobium transmission in Kenya. Am J Trop Med Hyg 61:751–759

    Article  CAS  PubMed  Google Scholar 

  • MolluscaBase (2022) MolluscaBase. http://www.molluscabase.org. Accessed 07 January 2022. https://doi.org/10.14284/448

  • Morley J (2010) Aquatic molluscs as auxiliary hosts for terrestrial nematode parasites: implications for pathogen transmission in a changing climate. Parasitology 137:1041–1056

    Article  CAS  PubMed  Google Scholar 

  • Muñiz-Pareja FS, Iturbe-Espinoza PA (2018) Effectiveness of Chaetogaster limnaei as a controller of Fasciola hepatica in experimental infections of Galba truncatula. Trop Parasitol 8:88–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguma JFM, McCullough FS, Masha E (1982) Elimination of Biomphalaria pfeifferi, Bulinus tropicus and Lymnaea natalensis by the ampullarid snail, Marisa cornuarietis, in a man-made dam in northern Tanzania. Acta Trop 39:85–90

    CAS  PubMed  Google Scholar 

  • Njeh F, Hamed N, Ayadi A et al (2015a) Molluscicidal and larvicidal activities of Capparis spinosa aerial parts against Galba truncatula intermediate host of Fasciola hepatica. Indian J Pharm Educ Res 49:242–249

    Article  Google Scholar 

  • Njeh F, Feki H, Koubaa I et al (2015b) Molluscicidal activity of Solanum elaeagnifolium seeds against Galba truncatula intermediate host of Fasciola hepatica: identification of β–solamarine. Pharm Biol 54:726–731

    Article  PubMed  Google Scholar 

  • Pécheur M (1974) Lutte stratégique contre la distomatose. Comptes-Rendus de Recherches, Travaux du Centre de Recherches sur les Maladies Parasitaires des Animaux Domestiques. IRSIA, Bruxelles, 38:85–150

    Google Scholar 

  • Peebles CR, Oliver-Gonzalez J, Ferguson FF (1972) Apparent adverse effect of Marisa cornuarietis upon Lymnaea columella and Biomphalaria glabrata in an ornamental pond in Puerto Rico. Hawaiian Entomol Soc 21(2):247–256

    Google Scholar 

  • Pelseneer P (1928) Les parasites des mollusques et les mollusques parasites. Bull Soc Zool Fr 53:158–189

    Google Scholar 

  • Perera G, Yong M, Ferret JR et al (1990) Effectiveness of three biological control agents against intermediate hosts of snail-mediated parasites in Cuba. Malacol Rev 23:47–52

    Google Scholar 

  • Pointier JP (2001) Invading freshwater snails and biological control in Martinique Island, French West Indies. Mem Inst Oswaldo Cruz 96(Suppl):63–74

    Article  Google Scholar 

  • Pointier JP, Augustin D (2000) Biological control and invading freshwater snails. A case study. C R Acad Sci Ser III Sci Vie 322:1093–1098

    Article  Google Scholar 

  • Pointier JP, David P, Jarne P (2011) The biological control of the snail hosts of schistosomes: the role of competitor snails and biological invasions. In: Toledo R, Fried B (eds) Biomphalaria snails and larval trematodes. Springer, New York, pp 215–238

    Chapter  Google Scholar 

  • Raunelli F, Gonzalez S (2009) Strategic control and prevalence of Fasciola hepatica in Cajamarca, Peru. A pilot study. Int J Appl Res Vet Med 7:145–152

    Google Scholar 

  • Richards DC, Cazier LD, Lester GT (2001) Spatial distribution of three snail species, including the invader Potamopyrgus antipodarum, in a freshwater spring. West North Am Nat 61:375–380

    Google Scholar 

  • Ritzema H (1994) Drainage principles and applications. International Institute for Land reclamation and Improvement, Wageningen, The Netherlands

    Google Scholar 

  • Rondelaud D (1975) Contribution à l'étude expérimentale de la prédation de Lymnaea (Galba) truncatula Müller par Zonitoides nitidus Müller (Mollusques Gastéropodes Pulmonés). Ann Parasitol Hum Comp 50:275–286

    Article  CAS  PubMed  Google Scholar 

  • Rondelaud D (1976) Analyse biocénotique et activité prédatrice des Carabiques dans les habitats de Lymnaea (Galba) truncatula Müller dans le nord-ouest du Limousin. Bull Mus Natl Hist Nat 385:57–66

    Google Scholar 

  • Rondelaud D (1977a) Données expérimentales sur les possibilités compétitives de Potamopyrgus jenkinsi Smith vis-à-vis de Lymnaea (Galba) truncatula Müller en Vienne et Haute-Vienne. Ann Parasitol Hum Comp 52:131–139

    Article  CAS  PubMed  Google Scholar 

  • Rondelaud D (1977b) L'évolution démographique de Lymnaea (Galba) truncatula Müller en Haute-Vienne. A propos de quatre années d'observations. Ann Parasitol Hum Comp 52:511–520

    Article  CAS  PubMed  Google Scholar 

  • Rondelaud D (1978) Les effets d'un groupement de Mollusques prédateurs: Zonitidae-Physidae, dans le contrôle biologique de Lymnaea (Galba) truncatula Müller. Ann Parasitol Hum Comp 53:511–517

    Article  CAS  PubMed  Google Scholar 

  • Rondelaud D (1979) Les espèces animales prédatrices de Lymnaea truncatula Müller dans ses habitats immergés en Haute-Vienne. Etude expérimentale de leur prédation. Bull Soc Hist Nat Toulouse 115:99–105

    Google Scholar 

  • Rondelaud D (1986) Le contrôle mixte et alterné de Lymnaea truncatula Müller par voie chimique et biologique. Premiers essais expérimentaux sur le terrain. Ann Rech Vet 17:15–20

    CAS  PubMed  Google Scholar 

  • Rondelaud D (1988) Les effets d'une concentration sublétale de molluscicide (CuCl2) sur l'activité reproductrice et les déplacements du mollusque hôte, Lymnaea truncatula Müller. Ann Rech Vet 19:273–278

    CAS  PubMed  Google Scholar 

  • Rondelaud D, Barthe D (1992) Observations épidémiologiques sur l'iridovirose de Lymnaea truncatula, mollusque vecteur de Fasciola hepatica. C R Acad Sci Ser III Sci Vie 314:609–612

    CAS  Google Scholar 

  • Rondelaud D, Vignoles P, Dreyfuss G et al (2006) The control of Galba truncatula (Gastropoda: Lymnaeidae) by the terrestrial snail Zonitoides nitidus on acid soils. Biol Control 39:290–299

    Article  Google Scholar 

  • Rondelaud D, Vignoles P, Dreyfuss G (2016) Aplexa hypnorum (Gastropoda: Physidae) exerts competition on two lymnaeid species in periodically-dried ditches. Ann Limnol Int J Lim 52:379–386

    Article  Google Scholar 

  • Rozendaal JA (1997) Vector control: methods for use by individuals and communities. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Saad AEHA, Khalil MT, Ragab FMA et al (2014) Efficacy of the fungi Aspergillus terreus and Penicillium janthinellum as biological control agents against Biomphalaria alexandrina snails. Int J Environ Sci Eng 5:25–37

    Google Scholar 

  • Sabourin E, Alda P, Vázquez A et al (2018) Impact of human activities on fasciolosis transmission. Trends Parasitol 34:891–903

    Article  PubMed  Google Scholar 

  • Samson KS, Wilson GL (1973) The use of ducks as biological control agents of Fasciola hepatica. Proc Helminthol Soc Wash 40:292–293

    Google Scholar 

  • Sardiña P, Beringer J, Roche D et al (2015) Temperature influences species interactions between a native and a globally invasive freshwater snail. Freshw Sci 34:933–941

    Article  Google Scholar 

  • Secor WE (2014) Water-based interventions for schistosomiasis control. Pathog Glob Health 108:246–254

    Article  Google Scholar 

  • Singer S, Bair T, Hammill TB et al (1994) Fermentation and toxin studies of the molluscicidal strains of Bacillus brevis. J Ind Microbiol 13:112–119

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh DK (1998) Molluscicidal activity of Nerium indicum bark. Braz J Med Biol Res 31:951–954

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Singh A (2003) Molluscicidal and anti-cholinesterase activity of Alstonia scholaris plant against freshwater snail Lymnaea acuminata. Pak J Biol Sci 6:1442–1446

    Article  Google Scholar 

  • Singh KL, Singh DK, Singh VK (2012) Characterization of the molluscicidal activity of Bauhinia variegata and Mimusops elengi plant extracts against the Fasciola vector Lymnaea acuminata. Rev Inst Med Trop São Paulo 54:135–140

    Article  PubMed  Google Scholar 

  • Sleem SH, El-Hommossany K (2008) Can the freshwater crayfish (Procambarus clarkii) help control schistosomiasis and fascioliasis in Egypt? Egypt J Aquat Biol Fish 12:175–183

    Article  Google Scholar 

  • Slootweg R, Vroeg PA, Wiersma SJ (1993) Effects of molluscivorous fish, water quality and pond management on the development of schistosomiasis vector snails in aquaculture ponds. Aquac Fish Manag 24:123–128

    Google Scholar 

  • Slootweg R, Malek EA, McCullough FS (1994) The biological control of snail intermediate hosts of schistosomiasis by fish. Rev Fish Biol Fish 4:67–90

    Article  Google Scholar 

  • Sokolow SH, Huttinger E, Jouanard N et al (2015) Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control. J Exp Biol 112:9650–9655

    CAS  Google Scholar 

  • Sousa RMOF, Rosa JS, Cunha AC et al (2017) Molluscicidal activity of four Apiaceae essential oils against the freshwater snail Radix peregra. J Pest Sci 90:971–984

    Article  Google Scholar 

  • Spithill TW, Smooker PM, Copeman DB (1999) Fasciola gigantica: epidemiology, control, immunology and molecular biology. In: Dalton JP (ed) Fasciolosis. CABI Publishing, Oxon, pp 465–525

    Google Scholar 

  • Srivastava P, Kumar P, Singh VK et al (2009) Molluscicidal activity of Piper nigrum (black) against the snail Lymnaea acuminata and Indoplanorbis exustus in the control of fascioliasis. J Herb Med Toxicol 3:81–86

    Google Scholar 

  • Suhardono M, Roberts JA, Copeman DB (2006) Biological control of Fasciola gigantica with Echinostoma revolutum. Vet Parasitol 140:166–170

    Article  CAS  PubMed  Google Scholar 

  • SuSin T (2001) Evaluation of different duck varieties for the control of the golden apple snail (Pomacea canaliculata) in transplanted and direct seeded rice. Crop Prot 20:599–604

    Article  Google Scholar 

  • Swartz SJ, De Leo GA, Wood CL et al (2015) Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control. J Exp Biol 218:3962–3967

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor EL (1964) Fascioliasis and the liver-fluke. FAO Agric Stud 64:1–235

    Google Scholar 

  • Teixeira T, Rosa JS, Rainha N et al (2012) Assessment of molluscicidal activity of essential oils from five Azorean plants against Radix peregra (Müller, 1774). Chemosphere 87:1–6

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Kumar Y, Sharma V et al (2019) Plants as molluscicides. Res J Pharmacogn Phytochem 11:8–13

    Google Scholar 

  • Tiwari F, Singh DK (2007) Toxicity test of plant derived molluscicides with attractant food pellets against snail, Lymnaea acuminata. Iran J Pharmacol Ther 6:103–107

    CAS  Google Scholar 

  • Torgerson P, Claxton J (1999) Epidemiology and control. In: Dalton JP (ed) Fasciolosis. CABI Publishing, Oxon, pp 113–149

    Google Scholar 

  • Valipour M, Krasilnikof J, Yannopoulos S et al (2020) The evolution of agricultural drainage from the earliest times to the present. Sustainability 12:416. https://doi.org/10.3390/su12010416

    Article  Google Scholar 

  • Van den Bruel WH (1968) Rapport d'activité 1968 (Groupe de travail pour l'étude de la lutte contre les limnées). Centre Agronomique de Gembloux, Belgium

    Google Scholar 

  • Vareille-Morel C, Dreyfuss G, Rondelaud D (1999) The characteristics of habitats colonized by three species of Lymnaea in swampy meadows on acid soil: their interest for fasciolosis control. Ann Limnol Int J Lim 35:173–178

    Article  Google Scholar 

  • Vasconcelos MC, Amorim A (2003a) Activity of Euphorbia splendens var. hislopii N.E.B. (Euphorbiaceae) latex against Lymnaea columella (Say, 1817) (Pulmonata: Lymnaeidae), intermediate host of Fasciola hepatica Linnaeus, 1758 (Trematoda: Fasciolidae). 1: test in laboratory. Mem Inst Oswaldo Cruz 98:544–563

    Google Scholar 

  • Vasconcelos MC, Amorim A (2003b) Activity of Euphorbia splendens var. hislopii N.E.B. (Euphorbiaceae) latex against Lymnaea columella (Say, 1817) (Pulmonata: Lymnaeidae), intermediate host of Fasciola hepatica Linnaeus, 1758 (Trematoda: Fasciolidae). 2: limited field-testing. Mem Inst Oswaldo Cruz 98:981–985

    Article  Google Scholar 

  • Vassiliades G (1984) Note sur les propriétés molluscicides de deux Euphorbiacées: Euphorbia tirucalli et Jatropha curcas. Essais en laboratoire au Sénégal. Rev Elev Méd Vét Pays Trop 37:32–34

    Google Scholar 

  • Vázquez AA, Pilar A, Lounnas M et al (2018) Lymnaeid snails hosts of Fasciola hepatica and Fasciola gigantica (Trematoda: Digenea): a worldwide review. CAB Rev 13:1–15. https://doi.org/10.1079/PAVSNNR201813062

    Article  Google Scholar 

  • Vignoles P, Rondelaud D, Dreyfuss G (2016) Contrôle intégré de deux parasitoses basé sur l'isolement des habitats colonisés par Omphiscola glabra dans deux fermes de la Haute-Vienne. Ann Sci Limousin 27:31–37

    Google Scholar 

  • Wagner VA (1936) The possibility of eradicating bilharzia by extensive planting of the tree Balanites. South Afr Med J 10:10–11

    Google Scholar 

  • Winterbourn MJ (1980) The distribution and biology of the freshwater gastropods Physa and Physastra in New Zealand. J Malacol Soc Austral 4:233–234

    Google Scholar 

  • Worden AA, Sellers KC, Tribe DF (1963) Animal health, Production and pasture. Longmans, Green and Co, London, UK

    Google Scholar 

  • World Health Organization (2002) WHO specifications and evaluations for public health pesticides: niclosamide. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • World Health Organization (2017) Field use of molluscicides in schistosomiasis control programmes: an operational manual for programme managers. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Xia J, Yuan Y, Xu X et al (2014) Evaluating the effect of a novel molluscicide in the endemic schistosomiasis japonica area of China. Int J Environ Res Public Health 11(10):10406–10418. https://doi.org/10.3390/ijerph111010406

    Article  PubMed  PubMed Central  Google Scholar 

  • Ximenes TF (1991) Le contrôle biologique de Lymnaea truncatula Müller, hôte intermédiaire de Fasciola hepatica L. Possibilités et perspectives. VMD Thesis, Alfort, University of Créteil

    Google Scholar 

  • Yadav RP, Singh A (2011) Efficacy of Euphorbia hirta latex as plant derived molluscicides against freshwater snails. Rev Inst Med Trop São Paulo 53:101–106

    Article  PubMed  Google Scholar 

  • Yadav RP, Singh A (2014) Effects of single, binary and tertiary combinations with Jatropha gossypifolia and other plant-derived molluscicides on reproduction and survival of the snail Lymnaea acuminata. Rev Inst Med Trop São Paulo 56:421–426

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang GJ, Li W, Sun LP (2010) Molluscicidal efficacies of different formulations of niclosamide: result of meta-analysis of Chinese literature. Parasit Vectors 3:84. https://doi.org/10.1186/1756-3305-3-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes A, El-Sherief H, Gawish F et al (2017) Biological control of snail hosts transmitting schistosomiasis by the water bug, Sphaerodema urinator. Parasitol Res 116:1257–1264

    Article  PubMed  Google Scholar 

  • Zukowski S, Walker KF (2009) Freshwater snails in competition: alien Physa acuta (Physidae) and native Glyptophysa gibbosa (Planorbidae) in the river Murray, South Australia. Mar Freshw Res 60:999–1005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Dreyfuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rondelaud, D., Vignoles, P., Dreyfuss, G., Pointier, JP., Vázquez, A.A. (2023). Control of Fasciolosis-Transmitting Lymnaeids in the Field. In: Vinarski, M.V., Vázquez, A.A. (eds) The Lymnaeidae. Zoological Monographs, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-30292-3_15

Download citation

Publish with us

Policies and ethics