Skip to main content

On the Construction of Position-Dependent Mass Models with Quadratic Spectra

  • Conference paper
  • First Online:
Geometric Methods in Physics XXXIX (WGMP 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 196 Accesses

Abstract

The construction of position-dependent mass Hamiltonian hierarchies is considered in the factorization context. It is shown that the superpotentials, the deformed potentials, and their bound state wave functions can be expressed in terms of a transformation function u that satisfy a second-order linear equation. The connection of this equation with a family of Ermakov equations allows the generation of different types of position-dependent mass models with quadratic spectra.

To Bogdan, with admiration and love.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied mathematics series. Dover, Washington D.C. (1970)

    Google Scholar 

  2. Andrianov, A., Borisov, N., Ioffe, M.: The factorization method and quantum systems with equivalent energy spectra. Physics Letters A 105(1), 19–22 (1984). https://doi.org/10.1016/0375-9601(84)90553-X

    Article  MathSciNet  Google Scholar 

  3. Andrianov, A.A., Borisov, N.V., Ioffe, M.V., Éides, M.I.: Supersymmetric mechanics: A new look at the equivalence of quantum systems. Theoretical and Mathematical Physics 61(1), 965–972 (1984). https://doi.org/10.1007/BF01038543

    Article  MathSciNet  Google Scholar 

  4. Bagchi, B., Banerjee, A., Quesne, C., Tkachuk, V.: Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass. Journal of Physics A: Mathematical and General 38(13), 2929 (2005). https://doi.org/10.1088/0305-4470/38/13/008

    Article  MathSciNet  MATH  Google Scholar 

  5. Bagchi, B., Quesne, C.: sl(2, c) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues. Physics Letters A 273(5), 285–292 (2000). https://doi.org/10.1016/S0375-9601(00)00512-0

  6. Bagchi, B., Quesne, C.: Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework. Physics Letters A 300(1), 18–26 (2002). https://doi.org/10.1016/S0375-9601(02)00689-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Bagchi, B.K.: Supersymmetry in quantum and classical mechanics, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 116. Chapman & Hall/CRC, Boca Raton, FL (2001)

    Google Scholar 

  8. Blanco-Garcia, Z., Rosas-Ortiz, O., Zelaya, K.: Interplay between Riccati, Ermakov, and Schrödinger equations to produce complex-valued potentials with real energy spectrum. Mathematical Methods in the Applied Sciences 42(15), 4925–4938 (2019). https://doi.org/10.1002/mma.5069

    Article  MathSciNet  MATH  Google Scholar 

  9. Cariñena, J.F., Rañada, M.F., Santander, M.: Curvature-dependent formalism, Schrödinger equation and energy levels for the harmonic oscillator on three-dimensional spherical and hyperbolic spaces. Journal of Physics A: Mathematical and Theoretical 45(26), 265303 (2012). https://doi.org/10.1088/1751-8113/45/26/265303

    MATH  Google Scholar 

  10. Chumakov, S.M., Wolf, K.B.: Supersymmetry in Helmholtz optics. Physics Letters A 193(1), 51–53 (1994). https://doi.org/10.1016/0375-9601(94)00616-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Physics Reports 251(5), 267–385 (1995). https://doi.org/10.1016/0370-1573(94)00080-M

    Article  MathSciNet  MATH  Google Scholar 

  12. Cruz y Cruz, S., Gress, Z.: Group approach to the paraxial propagation of Hermite–Gaussian modes in a parabolic medium. Annals of Physics 383, 257–277 (2017). https://doi.org/10.1016/j.aop.2017.05.020

  13. Cruz y Cruz, S., Gress, Z., Jiménez-Macías, P., Rosas-Ortiz, O.: Laguerre–Gaussian Wave Propagation in Parabolic Media. In: P. Kielanowski, A. Odzijewicz, E. Previato (eds.) Geometric Methods in Physics XXXVIII, pp. 117–128. Springer International Publishing, Birkhäuser (2020). https://doi.org/10.1007/978-3-030-53305-2_8

  14. Cruz y Cruz, S., Negro, J., Nieto, L.: Classical and quantum position-dependent mass harmonic oscillators. Physics Letters A 369(5), 400–406 (2007). https://doi.org/10.1016/j.physleta.2007.05.040

  15. Cruz y Cruz, S., Razo, R., Rosas-Ortiz, O., Zelaya, K.: Coherent states for exactly solvable time-dependent oscillators generated by Darboux transformations. Physica Scripta 95(4), 044009 (2020). https://doi.org/10.1088/1402-4896/ab6525

  16. Cruz y Cruz, S., Rosas-Ortiz, O.: Position-dependent mass oscillators and coherent states. Journal of Physics A: Mathematical and Theoretical 42(18), 185205 (2009). https://doi.org/10.1088/1751-8113/42/18/185205

  17. Cruz y Cruz, S., Rosas-Ortiz, O.: Dynamical equations, invariants and spectrum generating algebras of mechanical systems with position-dependent mass. SIGMA Symmetry Integrability Geom. Methods Appl. 9, Paper 004, 21 (2013). https://doi.org/10.3842/SIGMA.2013.004

  18. Cruz y Cruz, S., Santiago-Cruz, C.: Position dependent mass Scarf Hamiltonians generated via the Riccati equation. Mathematical Methods in the Applied Sciences 42(15), 4909–4924 (2019). https://doi.org/10.1002/mma.5068

  19. Cruz y Cruz, S., Rosas-Ortiz, O.: su(1,  1) Coherent States for Position-Dependent Mass Singular Oscillators. International Journal of Theoretical Physics 50(7), 2201–2210 (2011). https://doi.org/10.1007/s10773-011-0728-8

  20. De, R., Dutt, R., Sukhatme, U.: Mapping of shape invariant potentials under point canonical transformations. Journal of Physics A: Mathematical and General 25(13), L843 (1992). https://doi.org/10.1088/0305-4470/25/13/013

    Article  MathSciNet  Google Scholar 

  21. Ermakov, V.P.: Second-order differential equations: conditions of complete integrability. Appl. Anal. Discrete Math. 2(2), 123–145 (2008). https://doi.org/10.2298/AADM0802123E. Translated from the 1880 Russian original by A. O. Harin and edited by P. G. L. Leach

  22. Fernández-García, N., Rosas-Ortiz, O.: Gamow–Siegert functions and Darboux-deformed short range potentials. Annals of Physics 323(6), 1397–1414 (2008). https://doi.org/10.1016/j.aop.2007.11.002

    Article  MathSciNet  MATH  Google Scholar 

  23. Gress, Z., Cruz y Cruz, S.: Hermite coherent states for quadratic refractive index optical media. In: Integrability, supersymmetry and coherent states, CRM Ser. Math. Phys., pp. 323–339. Springer, Cham (2019)

    Google Scholar 

  24. Infeld, L., Hull, T.E.: The factorization method. Rev. Modern Physics 23, 21–68 (1951). https://doi.org/10.1103/revmodphys.23.21

    Article  MathSciNet  MATH  Google Scholar 

  25. Khordad, R.: Hydrogenic donor impurity in a cubic quantum dot: effect of position-dependent effective mass. The European Physical Journal B 85(4), 114 (2012). https://doi.org/10.1140/epjb/e2012-20435-6

    Article  Google Scholar 

  26. Kuru, Ş., Negro, J.: Dynamical algebras for Pöschl–Teller Hamiltonian hierarchies. Annals of Physics 324(12), 2548–2560 (2009). https://doi.org/10.1016/j.aop.2009.08.004

    Article  MathSciNet  MATH  Google Scholar 

  27. Mielnik, B.: Factorization method and new potentials with the oscillator spectrum. J. Math. Phys. 25(12), 3387–3389 (1984). https://doi.org/10.1063/1.526108

    Article  MathSciNet  MATH  Google Scholar 

  28. Mielnik, B., Nieto, L., Rosas–Ortiz, O.: The finite difference algorithm for higher order supersymmetry. Physics Letters A 269(2), 70–78 (2000). https://doi.org/10.1016/S0375-9601(00)00226-7

  29. Mielnik, B., Rosas-Ortiz, O.: Factorization: little or great algorithm? Journal of Physics A: Mathematical and General 37(43), 10007–10035 (2004). https://doi.org/10.1088/0305-4470/37/43/001

    Article  MathSciNet  MATH  Google Scholar 

  30. Mustafa, O.: PDM creation and annihilation operators of the harmonic oscillators and the emergence of an alternative PDM-Hamiltonian. Physics Letters A 384(13), 126265 (2020). https://doi.org/10.1016/j.physleta.2020.126265

    Article  MathSciNet  MATH  Google Scholar 

  31. Mustafa, O., Mazharimousavi, S.H.: Ordering Ambiguity Revisited via Position Dependent Mass Pseudo-Momentum Operators. International Journal of Theoretical Physics 46(7), 1786–1796 (2007). https://doi.org/10.1007/s10773-006-9311-0

    Article  MathSciNet  MATH  Google Scholar 

  32. Olivar-Romero, F., Rosas-Ortiz, O.: Factorization of the Quantum Fractional Oscillator. Journal of Physics: Conference Series 698(1), 012025 (2016). https://doi.org/10.1088/1742-6596/698/1/012025

    Google Scholar 

  33. Plastino, A.R., Rigo, A., Casas, M., Garcias, F., Plastino, A.: Supersymmetric approach to quantum systems with position-dependent effective mass. Phys. Rev. A 60, 4318–4325 (1999). https://doi.org/10.1103/PhysRevA.60.4318

    Article  Google Scholar 

  34. Quesne, C.: First-order intertwining operators and position-dependent mass Schrödinger equations in d dimensions. Annals of Physics 321(5), 1221–1239 (2006). https://doi.org/10.1016/j.aop.2005.11.013

    Article  MathSciNet  MATH  Google Scholar 

  35. Quesne, C.: Point canonical transformation versus deformed shape invariance for position-dependent mass Schrödinger equations. SIGMA Symmetry Integrability Geom. Methods Appl. 5, Paper 046, 17 (2009). https://doi.org/10.3842/SIGMA.2009.046

  36. von Roos, O.: Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547–7552 (1983). https://doi.org/10.1103/PhysRevB.27.7547

    Article  Google Scholar 

  37. Rosas-Ortiz, J.O.: Exactly solvable hydrogen-like potentials and the factorization method. Journal of Physics A: Mathematical and General 31(50), 10163 (1998). https://doi.org/10.1088/0305-4470/31/50/012

    Article  MathSciNet  MATH  Google Scholar 

  38. Rosas-Ortiz, O.: On the factorization method in quantum mechanics. In: A.B. Castañeda, F.J. Herranz, J. Negro Vadillo, L.M. Nieto, C. Pereña (eds.) Symmetries in quantum mechanics and quantum optics, pp. 285–299. Servicio de Publicaciones de la Universidad de Burgos, Spain (1999)

    Google Scholar 

  39. Rosas-Ortiz, O.: Position-Dependent Mass Systems: Classical and Quantum Pictures. In: P. Kielanowski, A. Odzijewicz, E. Previato (eds.) Geometric Methods in Physics XXXVIII, pp. 351–361. Springer International Publishing, Birkhäuser (2020). https://doi.org/10.1007/978-3-030-53305-2_24

    Chapter  Google Scholar 

  40. Rosas-Ortiz, O., Castaños, O., Schuch, D.: New supersymmetry-generated complex potentials with real spectra. Journal of Physics A: Mathematical and Theoretical 48(44), 445302 (2015). https://doi.org/10.1088/1751-8113/48/44/445302

    Article  MathSciNet  MATH  Google Scholar 

  41. Rosas-Ortiz, O., Cruz y Cruz, S.: Superpositions of bright and dark solitons supporting the creation of balanced gain-and-loss optical potentials. Mathematical Methods in the Applied Sciences 45(7), 3381–3392 (2022). https://doi.org/10.1002/mma.6666

  42. Rosas-Ortiz, O., Zelaya, K.: Bi-orthogonal approach to non-Hermitian Hamiltonians with the oscillator spectrum: Generalized coherent states for nonlinear algebras. Annals of Physics 388, 26–53 (2018). https://doi.org/10.1016/j.aop.2017.10.020

    Article  MathSciNet  MATH  Google Scholar 

  43. Sukumar, C.V.: Supersymmetry, factorisation of the Schrodinger equation and a Hamiltonian hierarchy. Journal of Physics A: Mathematical and General 18(2), L57 (1985). https://doi.org/10.1088/0305-4470/18/2/001

    Article  MathSciNet  MATH  Google Scholar 

  44. Zelaya, K., Cruz y Cruz, S., Rosas-Ortiz, O.: On the Construction of Non-Hermitian Hamiltonians with All-Real Spectra through Supersymmetric Algorithms. In: P. Kielanowski, A. Odzijewicz, E. Previato (eds.) Geometric Methods in Physics XXXVIII, pp. 283–292. Springer International Publishing, Birkhäuser (2020). https://doi.org/10.1007/978-3-030-53305-2_18

  45. Zelaya, K., Rosas-Ortiz, O.: Exactly Solvable Time-Dependent Oscillator-Like Potentials Generated by Darboux Transformations. Journal of Physics: Conference Series 839(1), 012018 (2017). https://doi.org/10.1088/1742-6596/839/1/012018

    Google Scholar 

Download references

Acknowledgements

This research has been funded by Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, Grant Numbers A1-S-24569 and CF19-304307, and Instituto Politécnico Nacional (IPN), Mexico Grant SIP20221346. M A Medina-Armendariz acknowledges the support of CONACyT through the scholarship 001624.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara CruzyCruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

CruzyCruz, S., Medina-Armendariz, M.A. (2023). On the Construction of Position-Dependent Mass Models with Quadratic Spectra. In: Kielanowski, P., Dobrogowska, A., Goldin, G.A., Goliński, T. (eds) Geometric Methods in Physics XXXIX. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-30284-8_8

Download citation

Publish with us

Policies and ethics