Skip to main content

Position-Dependent Mass Systems: Classical and Quantum Pictures

  • Conference paper
  • First Online:
Geometric Methods in Physics XXXVIII

Part of the book series: Trends in Mathematics ((TM))

Abstract

The present work is an extended abstract from a series of lectures addressed to introduce elements of the theory of position-dependent mass systems in both, classical and quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amir, N, Iqbal, S.: Algebraic solutions of shape-invariant position-dependent effective mass systems. J. Math. Phys. 57(6), 062105 (2016). MR 3515285

    Google Scholar 

  2. Amir, N, Iqbal, S.: Barut–Girardello coherent states for nonlinear oscillator with position-dependent mass, Commun. Theor. Phys. (Beijing) 66(1), 41–48 (2016). MR 3617970

    Google Scholar 

  3. Amir, N, Iqbal, S.: Coherent states of nonlinear oscillators with position-dependent mass: temporal stability and fractional revivals. Commun. Theor. Phys. (Beijing) 68(2), 181–190 (2017). MR 3727863

    Google Scholar 

  4. Aquino, N., Campoy, G., Yee-Madeira, H.: The inversion potential for NH3 using a DFT approach. Chem. Phys. Lett. 296(1), 111–116 (1998)

    Article  Google Scholar 

  5. Bagchi, B., Das, S., Ghosh, S., Poria, S.: Nonlinear dynamics of a position-dependent mass-driven Duffing-type oscillator. J. Phys. A 46(3), 032001 (2013). MR 3007509

    Google Scholar 

  6. Bagchi, B., Das, S., Ghosh, S., Poria, S.: Reply to comment on “Nonlinear dynamics of a position-dependent mass-driven Duffing-type oscillator” [mr3100609; mr3007509]. J. Phys. A 46(36), 368002 (2013). MR 3100610

    Google Scholar 

  7. Bagchi, B., Ghose Choudhury, A., Guha, P.: On quantized Liénard oscillator and momentum dependent mass. J. Math. Phys. 56(1), 012105 (2015). MR 3390825

    Google Scholar 

  8. Bastard, G.: Superlattice band structure in the envelope-function approximation. Phys. Rev. B 24, 5693–5697 (1981)

    Article  Google Scholar 

  9. Bastard, G.: Theoretical investigations of superlattice band structure in the envelope-function approximation. Phys. Rev. B 25, 7584–7597 (1982)

    Article  Google Scholar 

  10. Bethe, H.A.: Possible explanation of the solar-neutrino puzzle. Phys. Rev. Lett. 56, 1305–1308 (1986)

    Article  Google Scholar 

  11. Biswas, A., Roy, B.: Coherent state of the effective mass Harmonic oscillator. Mod. Phys. Lett. A 24(17), 1343–1353 (2009)

    Article  Google Scholar 

  12. Cari\(\tilde {\mathrm {n}}\)ena, J.F., Ra\(\tilde {\mathrm {n}}\)ada, M.F., Santander, M.: Curvature-dependent formalism, Schrödinger equation and energy levels for the harmonic oscillator on three-dimensional spherical and hyperbolic spaces. J. Phys. A Math. Theor. 45(26), 265303 (2012)

    Google Scholar 

  13. Cherroud, O., Yahiaoui, S.-A., Bentaiba, M.: Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions. J. Math. Phys. 58(6), 063503 (2017). MR 3659301

    Google Scholar 

  14. Chithiika Ruby, V., Senthilvelan, M.: On the construction of coherent states of position dependent mass Schrödinger equation endowed with effective potential. J. Math. Phys. 51(5), 052106 (2010). MR 2666952

    Google Scholar 

  15. Ghose Choudhury, A., Guha, P.: Quantization of the Liénard II equation and Jacobi’s last multiplier. J. Phys. A 46(16), 165202 (2013). MR 3043893

    Google Scholar 

  16. Cruz y Cruz, S.: Factorization method and the position-dependent mass problem. In: Kielanowski, P., Ali, S., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds.) Geometric Methods in Physics, XXX Workshop. Trends in Mathematics, pp. 229–237. Birkhäuser/Springer, Basel (2013). MR 3364042

    Google Scholar 

  17. Cruz y Cruz, S., Rosas-Ortiz, O.: Position-dependent mass oscillators and coherent states. J. Phys. A 42(18), 185205 (2009). MR 2591199

    Google Scholar 

  18. Cruz y Cruz, S., Rosas-Ortiz, O.: SU(1,  1) coherent states for position-dependent mass singular oscillators. Int. J. Theoret. Phys. 50(7), 2201–2210 (2011). MR 2810777

    Google Scholar 

  19. Cruz y Cruz, S., Rosas-Ortiz, O.: Dynamical equations, invariants and spectrum generating algebras of mechanical systems with position-dependent mass. Symmetry Integrability Geom. Methods Appl. 9, 004 (2013). MR 3033546

    Google Scholar 

  20. Cruz y Cruz, S., Santiago-Cruz, C.: Bounded motion for classical systems with position-dependent mass. J. Phys. Conf. Ser. 538, 012006 (2014)

    Google Scholar 

  21. Cruz y Cruz, S., Santiago-Cruz, C.: Position dependent mass Scarf Hamiltonians generated via the Riccati equation. Math. Methods Appl. Sci. 42(15), 4909–4924 (2019). MR 4011845

    Google Scholar 

  22. Cruz y Cruz, S., Negro J., Nieto, L.M.: Classical and quantum position-dependent mass Harmonic oscillators. Phys. Lett. A 369(5–6), 400–406 (2007). MR 2396257

    Google Scholar 

  23. Cruz y Cruz, S., Kuru, Ş., Negro, J.: Classical motion and coherent states for Pöschl–Teller potentials. Phys. Lett. A 372(9), 1391–1405 (2008). MR 2388337

    Google Scholar 

  24. Cruz y Cruz, S., Negro, J., Nieto, L.M.: On position-dependent mass Harmonic oscillators. J. Phys. Conf. Ser. 128, 012053 (2008)

    Google Scholar 

  25. da Costa, B.G., Borges, E.P.: Generalized space and linear momentum operators in quantum mechanics. J. Math. Phys. 55(6), 062105 (2014). MR 3390653

    Google Scholar 

  26. da Costa, B.G., Borges, E.P.: A position-dependent mass harmonic oscillator and deformed space. J. Math. Phys. 59(4), 042101 (2018). MR 3782534

    Google Scholar 

  27. Flores, J., Solovey, G., Gil, S.: Variable mass oscillator. Am. J. Phys. 71(7), 721–725 (2003)

    Article  Google Scholar 

  28. Ghosh, D., Roy, B.: Nonlinear dynamics of classical counterpart of the generalized quantum nonlinear oscillator driven by position dependent mass. Ann. Phys. 353, 222–237 (2015). MR 3322963

    Google Scholar 

  29. Hadjidemetriou, J.: Secular Variation of Mass and the Evolution of Binary Systems, vol. 5, pp. 131–188. Elsevier, Amsterdam (1967)

    Google Scholar 

  30. Ju, G.-X., Cai, C.-Y., Ren, Z.-Z.: Generalized harmonic oscillator and the Schrödinger equation with position-dependent mass. Commun. Theor. Phys. (Beijing) 51(5), 797–802 (2009). MR 2568386

    Google Scholar 

  31. Kozlov, V.V., Harin, A.O.: Kepler’s problem in constant curvature spaces. Celest. Mech. Dyn. Astron. 54(4), 393–399 (1992)

    Article  MathSciNet  Google Scholar 

  32. Krane, K.S.: The falling raindrop: variations on a theme of Newton. Am. J. Phys. 49(2), 113–117 (1981)

    Article  Google Scholar 

  33. Kuru, Ş., Negro, J.: Factorizations of one-dimensional classical systems. Ann. Phys. 323(2), 413–431 (2008). MR 2387033

    Google Scholar 

  34. Lévy-Leblond, J.-M.: Position-dependent effective mass and Galilean invariance. Phys. Rev. A 52, 1845–1849 (1995)

    Article  MathSciNet  Google Scholar 

  35. Lima, J.R.F., Vieira, M., Furtado, C., Moraes, F., Filgueiras, C.: Yet another position-dependent mass quantum model. J. Math. Phys. 53(7), 072101 (2012). MR 2985216

    Google Scholar 

  36. Mathews, P.M., Lakshmanan, M.: On a unique nonlinear oscillator. Q. Appl. Math. 32, 215–218 (1974/1975). MR 0430422

    Google Scholar 

  37. Mazharimousavi, S.H., Halilsoy, M.: One dimensional Newton’s equation with variable mass (2013). arXiv preprint arXiv:1308.2981

    Google Scholar 

  38. Mazharimousavi, S.H., Mustafa, O.: Classical and quantum quasi-free position-dependent mass: Pöschl–Teller and ordering ambiguity. Phys. Scr. 87(5), 055008 (2013)

    Article  Google Scholar 

  39. Molinar-Tabares, M.E., Castro-Arce, L., Figueroa-Navarro, C., Campos-GarcÃa, J.: Management of the von Roos operator in a confined system. Rev. Mex. fÃsica 62, 409–417 (2016)

    Google Scholar 

  40. Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A 41(5), 055205 (2008). MR 2433429

    Google Scholar 

  41. Mustafa, O.: Position-dependent-mass: cylindrical coordinates, separability, exact solvability and PT-symmetry. J. Phys. A 43(38), 385310 (2010). MR 2718340

    Google Scholar 

  42. Mustafa, O.: Radial power-law position-dependent mass: cylindrical coordinates, separability and spectral signatures. J. Phys. A Math. Theoret. 44(35), 355303 (2011)

    Article  Google Scholar 

  43. Mustafa, O.: Comment on “Nonlinear dynamics of a position-dependent mass-driven Duffing-type oscillator”. J. Phys. A 46(36), 368001 (2013). MR 3100609

    Google Scholar 

  44. Mustafa, O.: Position-dependent mass Lagrangians: nonlocal transformations, Euler–Lagrange invariance and exact solvability. J. Phys. A 48(22), 225206 (2015). MR 3355222

    Google Scholar 

  45. Mustafa, O.: Two-dimensional position-dependent mass Lagrangians; superintegrability and exact solvability (2017). arXiv preprint arXiv:1705.03246

    Google Scholar 

  46. Mustafa, O.: Newtonian invariance amendment for n-dimensional position-dependent mass Lagrangians: nonlocal point transformations (2019). Preprint arXiv:1906.12076

    Google Scholar 

  47. Mustafa, O.: On the n-dimensional extension of position-dependent mass Lagrangians: nonlocal transformations, Euler–Lagrange invariance and exact solvability (2019). arXiv:1904.03382

    Google Scholar 

  48. Mustafa, O.: sPDM creation and annihilation operators of the harmonic oscillators and the emergence of an alternative PDM-Hamiltonian. Phys. Lett. A 384(13), 126265 (2020)

    Article  MathSciNet  Google Scholar 

  49. Mustafa, O., Algadhi, Z.: Position-dependent mass momentum operator and minimal coupling: point canonical transformation and isospectrality. Eur. Phys. J. Plus 134(5), 228 (2019)

    Article  Google Scholar 

  50. Mustafa, O., Mazharimousavi, S.H.: Ordering ambiguity revisited via position dependent mass pseudo-momentum operators. Internat. J. Theoret. Phys. 46(7), 1786–1796 (2007). MR 2356706

    Google Scholar 

  51. Nikitin, A.G.: Kinematical invariance groups of the 3D Schrödinger equations with position dependent masses. J. Math. Phys. 58(8), 083508 (2017). MR 3691698

    Google Scholar 

  52. Nikitin, A.G.: Exact solvability of PDM systems with extended Lie symmetries (2019). arXiv preprint arXiv:1910.07412

    Google Scholar 

  53. Oliveira, R.R.S. Borges, V.F.S., Sousa, M.F.: Energy spectrum of a Dirac particle with position-dependent mass under the influence of the Aharonov–Casher effect. Braz. J. Phys. 49(6), 801–807 (2019)

    Article  Google Scholar 

  54. Pesce, C.P.: The application of Lagrange equations to mechanical systems with mass explicitly dependent on position . J. Appl. Mech. 70(5), 751–756 (2003)

    Article  Google Scholar 

  55. Ragnisco, O., Riglioni, D.: A family of exactly solvable radial quantum systems on space of non-constant curvature with accidental degeneracy in the spectrum. Symmetry Integrability and Geometry: Methods and Applications, vol. 6 (2010). MR 2769918

    Google Scholar 

  56. Richstone, D.O., Potter, M.D.: Galactic mass loss—a mild evolutionary correction to the angular size test. Astrophys. J. 254, 451–455 (1982)

    Article  Google Scholar 

  57. Rosas-Ortiz, O.: Coherent and squeezed states: introductory review of basic notions, properties, and generalizations. In: (Kuru, S., Negro, J. Nieto, L.M. (eds.) Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics, pp. 187–230. Springer, Cham, (2019). MR 3967790

    Google Scholar 

  58. Santiago-Cruz, C.: Isospectral trigonometric Pöschl–Teller potentials with position dependent mass generated by supersymmetry. J. Phys. Conf. Ser. 698, 012028 (2016)

    Article  Google Scholar 

  59. Sommerfeld, A.: Lectures on theoretical physics. Lectures on Theoretical Physics, vol. I. Academic Press, New York (1994)

    Google Scholar 

  60. Vubangsi, A., Tchoffo, M., Fai, L.C.: Position-dependent effective mass system in a variable potential: displacement operator method. Phys. Scr. 89(2), 025101 (2014)

    Article  Google Scholar 

  61. Wolf, K.B.: Geometric optics on phase space. Texts and Monographs in Physics. Springer, Berlin (2004). MR 2083763

    Google Scholar 

  62. Yahiaoui, S.A., Bentaiba, M.: Pseudo-Hermitian coherent states under the generalized quantum condition with position-dependent mass. J. Phys. A 45(44), 444034 (2012). MR 2991901

    Google Scholar 

  63. Yahiaoui, S.-A., Bentaiba, M.: New SU(1,  1) position-dependent effective mass coherent states for a generalized shifted Harmonic oscillator. J. Phys. A 47(2), 025301 (2014). MR 3150632

    Google Scholar 

  64. Yahiaoui, S.-A., Bentaiba, M.: Isospectral Hamiltonian for position-dependent mass for an arbitrary quantum system and coherent states. J. Math. Phys. 58(6), 063507 (2017). MR 3660210

    Google Scholar 

Download references

Acknowledgements

The author is indebted to Sara Cruz y Cruz, with whom most of the results reported in this work have been obtained. The support from Consejo Nacional de Ciencia y Tecnología (Mexico), grant number A1-S-24569, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Rosas-Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosas-Ortiz, O. (2020). Position-Dependent Mass Systems: Classical and Quantum Pictures. In: Kielanowski, P., Odzijewicz, A., Previato, E. (eds) Geometric Methods in Physics XXXVIII. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-53305-2_24

Download citation

Publish with us

Policies and ethics