Skip to main content

Role of AI for Data Security and Privacy in 5G Healthcare Informatics

  • Chapter
  • First Online:
6G Enabled Fog Computing in IoT

Abstract

The encouraging prospects of 5G and Internet of things (IoT) have brought significant advancement in the Healthcare domain. Medical IoT primarily uses cloud computing approaches for real-time remote monitoring of patient’s health by employing cyborg-automated techniques such as tele-ultrasound, telestenting and cardiac catheterization. As a result, hospital services have become more convenient and cost-effective. However, the dispersed environment of the sensor-cloud based services poses an enormous threat to patient data privacy and security. Moreover, in a generation dictated by cyber-attacks, data breaches can provide full access to patients’ sensitive data such as personally identifiable information and medical history. The necessity to yield new measures for Data Security and Privacy in the epoch of 5G Healthcare Informatics stems from the shortcomings of the prevailing security methodologies like data encryption, third party auditing, data anonymization, etc. In order to address the above challenges and explore the most promising use cases of 5G in the healthcare sector, we discuss the role of Artificial Intelligence (AI), Machine Learning (ML)/Deep Learning (DL) techniques and Blockchain applications that coalesce in overcoming existing hurdles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Latif, S., Asim, M., Usman, M., Qadir, J., & Rana, R. (2018). Automating motion correction in multishot MRI using generative adversarial networks.

    Google Scholar 

  2. Aksu, H., Uluagac, A. S., & Bentley, E. (2018). Identification of wearable devices with bluetooth. In Transactions on sustainable computing (2018) (p. 1).

    Google Scholar 

  3. Zhou, Y., Han, M., Liu, L., He, J. S., & Wang, Y. (2018). INFOCOM 2018 conference on computer communications workshops.

    Google Scholar 

  4. Kshetri, N. (2017). Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommunications Policy, 41, 1027–1038.

    Article  Google Scholar 

  5. Giles, M. (2019). Five emerging cyber-threats to worry about in 2019.

    Google Scholar 

  6. Marinov, B., Georgiou, E., Berchiolli, R. N., Satava, R. M., Cuschieri, A., Moglia, A., & Georgiou, K. (2022). 5G in healthcare: From Covid-19 to future challenges. IEEE Journal of Biomedical and Health Informatics, 4187–4196. IEEE.

    Google Scholar 

  7. de Aguiar, A. W. O., Fonseca, R., Muhammad, K., Magaia, N., Ribeiro, I. D. L., & de Albuquerque, V. H. C. (2021). An artificial intelligence application for drone-assisted 5G remote e-health. IEEE Internet of Things Magazine, 4, 30–35. IEEE.

    Article  Google Scholar 

  8. Pasha, M., & Shah, S. M. W. (2018). Framework for e-health systems in IoT-based environments. Wireless Communications and Mobile Computing, 2018, 1–12.

    Article  Google Scholar 

  9. Robinson, Y. H., Presskila, X. A., & Lawrence, T. S. (2017). Utilization of internet of things in health care information system. Internet of Things and Big Data Applications, 180, 35–46.

    Article  Google Scholar 

  10. Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-health gateways at the edge of healthcare internet-of-things: A fog computing approach. Future Generation Computer Systems, 2018, 1–5.

    Google Scholar 

  11. Islam, M. S., Humaira, F., & Nur, F. N. (2020). Healthcare applications in IoT. Global Journal of Medical Research: (B) Pharma, Drug Discovery, Toxicology & Medicine, 2020, 1–3.

    Google Scholar 

  12. Shewale, A. D., & Sankpal, S. V. (2020). IoT raspberry Pi based smart and secure health care system using BSN (pp. 506–510).

    Google Scholar 

  13. Aliverti, A. (2017). Wearable technology: Role in respiratory health and disease. Breathe, 13(2), e27–e36.

    Article  Google Scholar 

  14. Collins, A., & Yao, Y. (2018). Machine learning approaches: Data integration for disease prediction and prognosis. Applied Computational Genomics, 2018, 137–141. Springer.

    Article  Google Scholar 

  15. Afshar, P., Mohammadi, A., & Plataniotis, K. N. (2018). Brain tumor type classification via capsule networks. In 25th IEEE international conference on image processing (ICIP) (pp. 3129–3133). IEEE.

    Google Scholar 

  16. Zhu, W., Liu, C., Fan, W., & Xie, X. (2018). Deeplung: Deep 3D dual path nets for automated pulmonary nodule detection and classification. In 2018 IEEE winter conference on applications of computer vision (WACV) (pp. 673–681). IEEE.

    Chapter  Google Scholar 

  17. Ibrahim, M., Chakrabarty, K., Firouzi, F., & Farahani, B. (2018). From EDA to IoT e-health: Promises, challenges, and solutions. In IEEE transactions on computer-aided design of integrated circuits and systems. IEEE.

    Google Scholar 

  18. Cao, N., Wang, C., Li, M., Ren, K., & Lou, W. (2011). Privacy-preserving multi-keyword ranked search over encrypted cloud data. In Proceedings of the IEEE INFOCOM (pp. 829–837).

    Google Scholar 

  19. Bezawada, B., Liu, A. X., Jayaraman, B., Wang, A. L., & Li, R. (2015). Privacy preserving string matching for cloud computing. In Proceedings of the 35th IEEE international conference on distributed computing systems, ICDCS ’15 (pp. 609–618). IEEE.

    Google Scholar 

  20. Jing, Q., Vasilakos, A., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. In Wireless networks 20 (11 2014) (pp. 2481–2501).

    Google Scholar 

  21. Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P., & Ni, W. (2019). Anatomy of threats to the internet of things. In IEEE communications surveys tutorials 21, 2 (Secondquarter 2019) (pp. 1636–1675). IEEE.

    Google Scholar 

  22. Brass, I., Tanczer, L., Carr, M., Elsden, M., & Blackstock, J. (2018). Standardising a moving target: The development and evolution of IoT security standards. Living in the Internet of Things: Cybersecurity of the IoT, 2018, 1–9.

    Google Scholar 

  23. Milosevic, J., Malek, M., & Ferrante, A. (2016). A friend or a foe? Detecting malware using memory and CPU features. In Proceedings of the 13th international joint conference on e-business and telecommunications (ICETE 2016) (Vol. 4, pp. 73–84).

    Google Scholar 

  24. Jing, X., Yan, Z., Jiang, X., & Pedrycz, W. (2019). Network traffic fusion and analysis against DDoS flooding attacks with a novel reversible sketch. Information Fusion, 51(2019), 100–113.

    Article  Google Scholar 

  25. Elejla, O. E., Belaton, B., Anbar, M., Alabsi, B., & Al-Ani, A. K. (2019). Comparison of classification algorithms on icmpv6-based DDoS attacks detection. Lecture Notes in Electrical Engineering, 481(2019), 347–357.

    Article  Google Scholar 

  26. Rezazad, M., Brust, M. R., Akbari, M., Bouvry, P., & Cheung, N. M. (2018). Detecting target-area link-flooding DDoS attacks using traffic analysis and supervised learning. Advances in Information and Communication Networks, 2018.

    Google Scholar 

  27. Azmoodeh, A., Dehghantanha, A., & Choo, K.-K. R. (2018). Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Transactions on Sustainable Computing.

    Google Scholar 

  28. Aonzo, S., Merlo, A., Migliardi, M., Oneto, L., & Palmieri, F. (2017). Low-resource footprint, data-driven malware detection on android. IEEE Transactions on Sustainable Computing, 3782.

    Google Scholar 

  29. Feng, P., Ma, J., Sun, C., Xu, X., & Ma, Y. (2018). A novel dynamic android malware detection system with ensemble learning. IEEE Access, 6(2018), 30996–31011.

    Article  Google Scholar 

  30. Wei, L., Luo, W., Weng, J., Zhong, Y., Zhang, X., & Zheng, Y. (2017). Machine learning-based malicious application detection of android. IEEE Access, 5(2017), 25591–25601.

    Article  Google Scholar 

  31. Liu, J., Bi, H., & Kato, N. (2022). Deep learning-based privacy preservation and data analytics for IoT enabled healthcare. IEEE Transactions on Industrial Informatics, 18, 4798–4807. IEEE.

    Article  Google Scholar 

  32. Restuccia, F., DrOro, S., & Melodia, T. (2018). Securing the internet of things in the age of machine learning and software-defined networking. IEEE Internet of Things Journal, 1, 1–14.

    Google Scholar 

  33. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., & Faruki, P. (2019). Network intrusion detection for IoT security based on learning techniques. IEEE Communications Surveys Tutorials 21, 3 (Thirdquarter 2019), 2671–2701.

    Google Scholar 

  34. Sharmeen, S., Huda, S., Abawajy, J. H., Ismail, W. N., & Hassan, M. M. (2018). Malware threats and detection for industrial mobile-IoT networks. IEEE Access, 6(2018), 15941–15957.

    Article  Google Scholar 

  35. Diro, A., & Chilamkurti, N. (2018). Leveraging LSTM networks for attack detection in fog-to-things communications. IEEE Communications Magazine, 56, 124–130.

    Article  Google Scholar 

  36. Abeshu, A., & Chilamkurti, N. (2018). Deep learning: The frontier for distributed attack detection in fog-to-things computing. In. IEEE Communications Magazine, 56, 169–175.

    Article  Google Scholar 

  37. Tan, Z., Jamdagni, A., He, X., Nanda, P., & Liu, R. P. (2014). A system for denial-of-service attack detection based on multivariate correlation analysis. IEEE Transactions on Parallel and Distributed Systems, 25, 447–456.

    Article  Google Scholar 

  38. Ma, Y., Talha, M., Al-Rakhami, M. S., Wang, R., Xu, J., & Ghoneim, A. (2021). Auxiliary diagnosis of Covid-19 based on 5G-enabled federated learning. IEEE Network, 35, 14–20. IEEE.

    Article  Google Scholar 

  39. Zong, S., Ritter, A., Mueller, G., & Wright, E. (2019). Analyzing the perceived severity of cybersecurity threats reported on social media.

    Book  Google Scholar 

  40. Machado, C., & Frohlich, A. A. (2018). IoT data integrity verification for cyber-physical systems using blockchain. In Proceedings – 2018 IEEE 21st international symposium on real-time computing, ISORC 2018 (pp. 83–90).

    Google Scholar 

  41. Liang, X., Zhao, J., Shetty, S., & Li, D. (2017). Towards data assurance and resilience in IoT using blockchain. In MILCOM 2017 – IEEE military communications conference (MILCOM) (pp. 261–266).

    Chapter  Google Scholar 

  42. Tselios, C., Politis, I., & Kotsopoulos, S. (2017). Enhancing SDN security for IoT-related deployments through blockchain. In IEEE conference on network function virtualization and software defined networks, NFV-SDN 2017, January (pp. 303–308).

    Google Scholar 

  43. Sharma, P. K., Singh, S., Jeong, Y. S., & Park, J. H. (2017). Distblocknet: A distributed blockchains-based secure SDN architecture for IoT networks. IEEE Communications Magazine, 55(9), 78–85.

    Article  Google Scholar 

  44. Gao, J., Asamoah, K. O., Sifah, E. B., Smahi, A., Xia, Q., Xia, H., Zhang, X., & Dong, G. (2018). Gridmonitoring: Secured sovereign blockchain based monitoring on smart grid. IEEE Access, 6(2018), 9917–9925.

    Article  Google Scholar 

  45. Golomb, T., Mirsky, Y., & Elovici, Y. (2018). Ciota: Collaborative IoT anomaly detection via blockchain.

    Google Scholar 

  46. Guo, R., Shi, H., Zhao, Q., & Dong, Z. (2018). Secure attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems. IEEE Access, 6(2018), 11676–11686.

    Article  Google Scholar 

  47. Aitzhan, N. Z., & Svetinovic, D. (2018). Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Transactions on Dependable and Secure Computing 15, 5, 4, 840–852.

    Article  Google Scholar 

  48. Sharma, P. K., Chen, M. Y., & Park, J. H. (2018). A software defined fog node based distributed blockchain cloud architecture for IoT. IEEE Access, 6, 115–124.

    Article  Google Scholar 

  49. Song, J. C., Demir, M. A., Prevost, J. J., & Rad, P. (2018). Blockchain design for trusted decentralized IoT networks. In 2018 13th system of systems engineering conference.

    Google Scholar 

  50. Dorri, A., Kanhere, S. S., & Jurdak, R. (2016). Blockchain in internet of things: Challenges and solutions.

    Google Scholar 

  51. Khaled Salah, M., Rehman, H. U., Nizamuddin, N., & Al-Fuqaha, A. (2019). Blockchain for AI: Review and open research challenges. IEEE Access, 7, 10127–10149.

    Article  Google Scholar 

  52. Niwa, H. (2007). Why blockchain is the future of IoT?

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheth, A., Bhatia, J., Trivedi, H., Jhaveri, R. (2023). Role of AI for Data Security and Privacy in 5G Healthcare Informatics. In: Kumar, M., Gill, S.S., Samriya, J.K., Uhlig, S. (eds) 6G Enabled Fog Computing in IoT. Springer, Cham. https://doi.org/10.1007/978-3-031-30101-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30101-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30100-1

  • Online ISBN: 978-3-031-30101-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics