Skip to main content

Paedomorphosis and Evolution of Sequestrate Basidiomycetes

  • Chapter
  • First Online:
Evolution of Fungi and Fungal-Like Organisms

Part of the book series: The Mycota ((MYCOTA,volume 14))

Abstract

Current theories on the evolution of sequestrate (enclosed) basidiomes explain the origin of these forms in a gradualist adaptational process led by selective forces, such as drought and animal consumption. Paedomorphosis (the retention of juvenile traits) has been invoked as the phenomenon underlying sequestration, but many consequences of this process have not yet been explored. Our present interpretation of sequestrate morphologies, in light of Stephen Jay Gould’s characterization of neoteny (retention of juvenile features in an adult stage with mature reproductive structures) and progenesis (the onset of sexual maturity in a morphologically immature stage that does not reach the mature morphology observed in the ancestral form), both involved in paedomorphosis, implies that the origin of sequestrate basidiomes might constitute two distinct evolutionary processes. These two processes could be recognized among fungi by contrasting their morphological plasticity, phylogenetic diversification, and ecological patterns. The hypotheses discussed here provide new insights for interpreting and studying the evolution of sequestrate fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albee-Scott SR (2007) Does secotioid inertia drive the evolution of false-truffles? Mycol Res 111(9):1030–1039

    Article  PubMed  Google Scholar 

  • Alvarado P, Cabero J, Moreno-Mateos D, Vizzini A, Alonso J, Lebeuf R, Vidal JM et al (2021) Phylogenetic relationships among false truffle genera of Alpova, Melanogaster, Neoalpova, and Paralpova, gen. nov. Mycologia 113(4):828–841

    Article  CAS  PubMed  Google Scholar 

  • Baura G, Szaro TM, Bruns TD (1992) Gastrosuillus laricinus is a recent derivative of Suillus grevillei: molecular evidence. Mycologia 84(4):592–597

    Article  CAS  Google Scholar 

  • Boddy L, Hiscox J (2016) Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi. In: Heitman J, Howlett JB, Crous PW, Stukenbrock EH, James TY, Gow NAR (eds) The Fungal Kingdom, Edition. American Society of Microbiology, Washington, DC, pp 293–308

    Google Scholar 

  • Bougher NL, Castellano MA (1993) Delimitation of Hymenogaster sensu stricto and four new segregate genera. Mycologia 85(2):273–293

    Article  Google Scholar 

  • Braaten CC, Matheny PB, Viess DL, Wood MG, Williams JH, Bougher NL (2014) Two new species of Inocybe from Australia and North America that include novel secotioid forms. Botany 92(1):9–22

    Article  Google Scholar 

  • Britz R, Conway KW (2016) Danionella dracula, an escape from the cypriniform Bauplan via developmental truncation? J Morphol 277(2):147–166

    Article  PubMed  Google Scholar 

  • Bruns TD, Fogel R, White TJ, Palmer JD (1989) Accelerated evolution of a false-truffle from a mushroom ancestor. Nature 339(6220):140–142

    Article  CAS  PubMed  Google Scholar 

  • Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99-yr spore burial experiment. New Phytol 181(2):463–470

    Article  PubMed  Google Scholar 

  • Caiafa MV, Sandoval-Leiva P, Matheny PB, Calle A, Smith ME (2021a) Four new species of sequestrate Inocybe from Chilean Nothofagaceae forests. Mycologia 113(3):629–642

    Article  CAS  PubMed  Google Scholar 

  • Caiafa MV, Jusino MA, Wilkie AC, Díaz IA, Sieving KE, Smith ME (2021b) Discovering the role of Patagonian birds in the dispersal of truffles and other mycorrhizal fungi. Curr Biol 31(24):5558–5570

    Article  CAS  PubMed  Google Scholar 

  • Castellano MA, Trappe JM, Malajczuk N (1992) Australasian truffle-like fungi. III. Royoungia gen. nov. and Mycoamaranthus gen. nov. (Basidiomycotina). Aus Syst Bot 5(5):613–616

    Article  Google Scholar 

  • Castellano MA, Trappe JM, Lodge DJ (2007) Mayamontana coccolobae (Basidiomycota), a new sequestrate taxon from Belize. Mycotaxon 100:289–294

    Google Scholar 

  • Castellano MA, Elliott TF, Truong C, Séné O, Dentinger BT, Henkel TW (2016) Kombocles bakaiana gen. sp. nov. (Boletaceae), a new sequestrate fungus from Cameroon. IMA Fungus 7(2):239–245

    Article  PubMed  PubMed Central  Google Scholar 

  • Claridge AW, Trappe JM, Castellano MA (2001) Australasian truffle-like fungi. X. Gymnopaxillus (Basidiomycota, Austropaxillaceae). Aust Syst Bot 14(2):273–281

    Article  Google Scholar 

  • Clémençon H (2005) New observations on the basidiome ontogeny of Chamonixia caespitosa (sequestrate Boletaceae). Persoonia 18(4):499–504

    Google Scholar 

  • Coker WC, Couch JN (1974) The gasteromycetes of the eastern United States and Canada. University of North Carolina Press, Chapel Hill, North Carolina

    Google Scholar 

  • Crous PW, Luangsa-Ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, Roux J, Barreto RW, Baseia IG, Cano-Lira JF, Martín MP et al (2018) Fungal planet description sheets: 785–867. Persoonia 41:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danks MA, Simpson N, Elliott TF, Paine CT, Vernes K (2020) Modeling mycorrhizal fungi dispersal by the mycophagous swamp wallaby (Wallabia bicolor). Ecol Evol 10(23):12920–12928

    Article  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. J. Murray, London

    Book  Google Scholar 

  • David B (1989) Mosaic pattern of heterochronies: variation and diversity in Pourtalesiidae (deep-sea echinoids). Evol Biol 24:297–327

    Google Scholar 

  • Davoodian N, Lebel T, Castellano MA, Hosaka K (2021) Hysterangiales revisited: expanded phylogeny reveals new genera and two new suborders. Fungal Systematics and Evolution 8(1):65–80. https://doi.org/10.3114/fuse.2021.08.06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bary A (1884) Vergleichende morphologie und biologie der Pilze. Mycetozoen und Bacterien, Wilhelm Engelmann, Leipzig, Germany

    Google Scholar 

  • de Beer GR (1951) Embryos and ancestors, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Dodge CW (1931) Alpova, a new genus of Rhizopogonaceae, with further notes on Leucogaster and Arcangeliella. Ann Mo Bot Gard 18(3):457–464

    Article  Google Scholar 

  • Dring DM (1973) Gasteromycetes. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi, vol IVB. Academic Press, New York & London, pp 451–478

    Google Scholar 

  • Elliott TF, Trappe JM (2018) A worldwide nomenclature revision of sequestrate Russula species. Fungal Systematics and Evolution 1:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer E (1933) Gasteromycetae. In Engler and Prantle, Die Naturlichen Pflanzen-familien

    Google Scholar 

  • Fogel R (1990) Leucogaster columellatus is a Sclerogaster. Mycologia 82(5):655–657

    Article  Google Scholar 

  • Frank JL, Siegel N, Schwarz CF, Araki B, Vellinga EC (2020) Xerocomellus (Boletaceae) in western North America. Fungal Systematics and Evolution 6:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelardi M, Fechner N, Halling RE, Costanzo F (2017) Gymnogaster boletoides JW Cribb (Boletaceae, Boletales), a striking Australian secotioid bolete. Austrobaileya 10(1):121–129

    Google Scholar 

  • Gerber S, Hopkins MJ (2011) Mosaic heterochrony and evolutionary modularity: the trilobite genus Zacanthopsis as a case study. Evol Int J Org 65(11):3241–3252

    Article  Google Scholar 

  • Giachini AJ, Hosaka K, Nouhra E, Spatafora J, Trappe JM (2010) Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences. Fungal Biol 114(2–3):224–234

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt R (1933) Some aspects of evolution. Science 78(2033):539–547

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc В Soc Lond В 205:581–698

    CAS  Google Scholar 

  • Gube M (2009) Ontogeny and phylogeny of gasteroid members of Agaricaceae (Basidiomycetes). Dissertation, Friedrich-Schiller-Universität Jena

    Google Scholar 

  • Gube M, Dörfelt H (2011) Gasteromycetation in Agaricaceae sl (Basidiomycota): morphological and ecological implementations. Feddes Repert 122(5–6):367–390

    Article  Google Scholar 

  • Gull K (1981) Meiosis, basidiospore development and post-meiotic mitosis in the basidiomycete. Archives of Microbiology 128(4):403–406

    Article  Google Scholar 

  • Guzmán G (1969) Veligaster, a new genus of the Sclerodermataceae. Mycologia 61(6):1117–1123

    Article  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen: Bd. Allgemeine Entwicklungsgeschichte der Organismen. ed. G. Reimer

    Google Scholar 

  • Harrower E (2017) Systematics and biogeography of the Cortinarius violaceus group and sequestrate evolution in Cortinarius (Agaricales). Dissertation,. University of Tennessee Knoxville

    Google Scholar 

  • Harrower E, Smith ME, Mujic AB, Truong C, Henkel TW, Aime MC, Ovrebo C, Matheny PB (2016) Are sequestrate taxa evolutionary dead-ends? Assessing evolution and diversification of sequestrate Cortinarius. Mycological Society of America (MSA) Annual Meeting, Berkeley, California

    Google Scholar 

  • Heim R (1971) Interrelationships between the Agaricales and Gasteromycetes. In: Petersen RH (ed) Evolution in the higher basidiomycetes. University of Tennessee, Knoxville, Tennessee, USA, pp 505–534

    Google Scholar 

  • Henkel TW, Smith ME, Aime MC (2010) Guyanagaster, a new wood-decaying sequestrate fungal genus related to Armillaria (Physalacriaceae, Agaricales, Basidiomycota). Am J Bot 97(9):1474–1484

    Article  PubMed  Google Scholar 

  • Hennings PC (1896) Clavogaster eine neue Gasteromyceten-gattung sowie mehrere neue Agaricineen aus Neu-Seeland. Hedwigia 35:303–305

    Google Scholar 

  • Hibbett DS, Tsuneda A, Murakami S (1994) The secotioid form of Lentinus tigrinus: genetics and development of a fungal morphological innovation. Am J Bot 81(4):466–478

    Article  Google Scholar 

  • Hornok L (2007) Sexual and vegetative compatibility/incompatibility in Fusarium species. Acta Phytopathol Entomol Hung 42(2):291–296

    Article  CAS  Google Scholar 

  • Horton BM, Glen M, Davidson NJ, Ratkowsky DA, Close DC, Wardlaw TJ, Mohammed C (2017) An assessment of ectomycorrhizal fungal communities in Tasmanian temperate high-altitude Eucalyptus delegatensis forest reveals a dominance of the Cortinariaceae. Mycorrhiza 27(1):67–74

    Article  PubMed  Google Scholar 

  • Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan W, Dominguez LS, Simpson NB et al (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98(6):949–959

    Article  CAS  PubMed  Google Scholar 

  • Justo A, Morgenstern I, Hallen-Adams HE, Hibbett DS (2010) Convergent evolution of sequestrate forms in Amanita under Mediterranean climate conditions. Mycologia 102(3):675–688

    Article  PubMed  Google Scholar 

  • Karlsen-Ayala E, Gazis R, Smith ME (2021) Asperosporus subterraneus, a new genus and species of sequestrate Agaricaceae found in Florida nursery production. Fungal Syst Evol 8(1):91–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita A, Sasaki H, Nara K (2012) Multiple origins of sequestrate basidiomes within Entoloma inferred from molecular phylogenetic analyses. Fungal BiolFungal Biol 116(12):1250–1262

    Article  CAS  Google Scholar 

  • Koch RA, Wilson AW, Séné O, Henkel TW, Aime MC (2017) Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster. BMC Evol Biol 17(1):1–16

    Article  Google Scholar 

  • Kraisitudomsook N, Healy RA, Smith ME (2021) Molecular systematics and taxonomic overview of the bird’s nest fungi (Nidulariaceae). Fungal Biol 125(9):693–703

    Article  CAS  PubMed  Google Scholar 

  • Kretzer A, Bruns TD (1997) Molecular revisitation of the genus Gastrosuillus. Mycologia 89(4):586–589

    Article  Google Scholar 

  • Kuhar F, Smith ME, Mujic A, Truong C, Nouhra E (2017) A systematic overview of Descolea (Agaricales) in the Nothofagaceae forests of Patagonia. Fungal Biol 121(10):876–889

    Article  PubMed  Google Scholar 

  • Kuhar F, Terzzoli L, Nohura E, Robledo G, Mercker M (2022) Pattern formation features might explain homoplasy: fertile surfaces in higher fungi as an example. Theory in Biosciences 2022:1–11

    Article  Google Scholar 

  • Lakatos I (1970) Falsification and the methodology of scientific research programmes. In: Lakatos M (ed) pp. 91–195

    Google Scholar 

  • Larsson E, Jeppson M (2008) Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa. Mycol Res 112(1):4–22

    Article  CAS  PubMed  Google Scholar 

  • Lebel T, Castellano MA (2002) Type studies of sequestrate Russulales II. Australian and New Zealand species related to Russula. Mycologia 94(2):327–354

    Article  PubMed  Google Scholar 

  • Lebel T, Catcheside PS (2009) The truffle genus Cribbea (Physalacriaceae, Agaricales) in Australia. Aust Syst Bot 22(1):39–55

    Article  Google Scholar 

  • Lebel T, Syme A (2012) Sequestrate species of Agaricus and Macrolepiota from Australia: new species and combinations and their position in a calibrated phylogeny. Mycologia 104(2):496–520

    Article  PubMed  Google Scholar 

  • Lebel T, Orihara T, Maekawa N (2012) The sequestrate genus Rosbeeva T. Lebel & Orihara gen. nov. (Boletaceae) from Australasia and Japan: new species and new combinations. Fungal Divers 52:49–71

    Article  Google Scholar 

  • Lebel T, Castellano MA, Beever RV (2015) Cryptic diversity in the sequestrate genus Stephanospora (Stephanosporaceae: Agaricales) in Australasia. Fungal Biol 119(4):201–228

    Article  PubMed  Google Scholar 

  • Lebel T, Cooper JA, Castellano MA, Nuytinck J (2021) Three independent evolutionary events of sequestrate Lactifluus species in Australasia. FUSE 8:9–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lohwag H (1926) Zur Entwicklungsgeschichte und morphologie der Gastromyceten. Beih Bot Centralbl 42(2):117–334

    Google Scholar 

  • Loizides M, Alvarado P, Polemis E, Dimou DM, Zervakis GI, Thines M, Telle S, Konstantinou G, Gube M (2020) Multiple evolutionary origins of sequestrate species in the agaricoid genus Chlorophyllum. Mycologia 112(2):400–422

    Article  CAS  PubMed  Google Scholar 

  • Lumyong S, Sanmee R, Lumyong P, Yang ZL, Trappe JM (2003) Mycoamaranthus cambodgensis comb. nov., a widely distributed sequestrate basidiomycete from Australia and southeastern Asia. Mycol Prog 2(4):323–325

    Article  Google Scholar 

  • Malençon G (1955) Le développement du Torrendia pulchella Bres. et son importance morphogénétique. Laboratoire de cryptogamie du Muséum national d'histoire naturelle

    Google Scholar 

  • Mangold-Wirz K (1966) Cerebralisation und ontogenese modus bei eutherien. Cells Tissues Organs 63(4):449–508

    Article  CAS  Google Scholar 

  • Martín MP, Raidl S, Telleria MT (2004) Molecular analyses confirm the relationship between Stephanospora caroticolor and Lindtneria trachyspora. Mycotaxon 90(1):133–140

    Google Scholar 

  • McNamara KJ (1982) Heterochrony and phylogenetic trends. Paleobiology:130–142

    Google Scholar 

  • Moreno G, Heykoop M, Esqueda M, Olariaga I (2015) Another lineage of secotioid fungi is discovered: Psathyrella secotioides sp. nov. from Mexico. Mycol Prog 14(6). https://doi.org/10.1007/s11557-015-1057-8

  • Morse EE (1933) A study of the genus Podaxis. Mycologia 25(1):1–33

    Article  Google Scholar 

  • Müller F (1864) Für Darwin. Wilhelm Engelmann

    Book  Google Scholar 

  • Nagy LG, Riley R, Tritt A, Adam C, Daum C, Floudas D, Sun H, Yadav JS, Pangilinan J, Larsson KH, Matsuura K (2016) Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol Biology Evol 33(4):959–970

    Article  CAS  Google Scholar 

  • Neville P, Poumarat S, Ivaldi P (2004) Recoltes provencales de Descolea tenuipes (Setch.) Neville et Poumarat comb. nov. Etude sur la variabilité sporique. Bull Trimest Soc Mycol Fr 120(1–4):51–72

    Google Scholar 

  • Nouhra ER, Dominguez LS, Becerra AG, Trappe JM (2005) Morphological, molecular and ecological aspects of the South American hypogeous fungus Alpova austroalnicola sp. nov. Mycologia 97(3):598–604

    Article  PubMed  Google Scholar 

  • Nouhra E, Urcelay C, Longo S, Tedersoo L (2013) Ectomycorrhizal fungal communities associated to Nothofagus species in Northern Patagonia. Mycorrhiza 23(6):487–496

    Article  PubMed  Google Scholar 

  • Oizumi R, Kuniya T, Enatsu Y (2016) Reconsideration of r/K selection theory using stochastic control theory and nonlinear structured population models. PLoS One 11(6):e0157715

    Article  PubMed  PubMed Central  Google Scholar 

  • Orihara T, Smith ME (2017) Unique phylogenetic position of the African truffle-like fungus, Octaviania ivoryana (Boletaceae, Boletales), and the proposal of a new genus, Afrocastellanoa. Mycologia 109(2):323–332

    Article  PubMed  Google Scholar 

  • Orihara T, Smith ME, Shimomura N, Iwase K, Maekawa N (2012) Diversity and systematics of the sequestrate genus Octaviania in Japan: two new subgenera and eleven new species. Persoonia - Molecular Phylogeny and Evolution of Fungi 28(1):85–112

    Article  CAS  PubMed Central  Google Scholar 

  • Orihara T, Ohmae M, Yamamoto K (2016) First report of Chamonixia caespitosa (Boletaceae, Boletales) from Japan and its phylogeographic significance. Mycoscience 57(1):58–63

    Article  Google Scholar 

  • Orihara T, Healy R, Corrales A, Smith ME (2021) Multilocus phylogenies reveal three new truffle-like taxa and the traces of interspecific hybridization in Octaviania (Boletaceae, Boletales). IMA Fungus 12(1):1–22

    Article  Google Scholar 

  • Pacioni G, Sharp C (2000) Mackintoshia, a new sequestrate basidiomycete genus from Zimbabwe. Mycotaxon 75:225–228

    Google Scholar 

  • Palfner G, Galleguillos F, Arnold N, Casanova-Katny A, Horak E (2020) Sequestrate syndrome in Bondarzewia guaitecasensis (Fungi, Basidiomycota)? The case of Hybogaster giganteus revisited. Phytotaxa 474(3):272–282

    Article  Google Scholar 

  • Payer JB (1850) Botanique cryptogamique. F. Savy, Paris

    Google Scholar 

  • Pegler DN, Young TWK (1979) The gasteroid Russulales. Trans. Brit. Mycol. Soc. 72(3):353–388

    Google Scholar 

  • Peintner U, Bougher NL, Castellano MA, Moncalvo JM, Moser MM, Trappe JM, Vilgalys R (2001) Multiple origins of sequestrate fungi related to Cortinarius (Cortinariaceae). Amer J Bot 88(12):2168–2179

    Article  CAS  Google Scholar 

  • Pilát A (1958) Gasteromycetes Houby-Brichatky. Práce Ceskoslovenské Akademie Ved, Prague

    Google Scholar 

  • Rauschert S (1964) Montagnea arenaria (DC. ex Fries) Zeller, ein für Deutschland neuer Steppenpilz. Westfälische Pilzbriefe 5(1):1–13

    Google Scholar 

  • Rehsteiner H (1892) Beiträge zur entwicklungsgeschichte der Fruchtkörper einiger gastromyceten

    Google Scholar 

  • Reijnders AFM (1976) Recherches sur le développement et l’histogénèse dans les Asterosporales. Persoonia 9(1):65–83

    Google Scholar 

  • Reijnders AFM (1999) The formation of spores by metamorphosed basidia in Mycocalia and Scleroderma. Mycol Res 103(5):521–526

    Article  Google Scholar 

  • Reijnders AFM (2000) A morphogenetic analysis of the basic characters of the gasteromycetes and their relation to other basidiomycetes. Mycol Res 104(8):900–910

    Article  Google Scholar 

  • Reznick D, Bryant MJ, Bashey F (2002) r-and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83(6):1509–1520

    Article  Google Scholar 

  • Sáenz JA, Carranza J, Gómez VS (1983) Estudio comparativo al microscopio de luz y al microscopio electrónico de barrido de Laternea triscapa, Laternea pusilla y Ligiella rodrigueziana. Rev Biol Trop 31(2):327–331

    Google Scholar 

  • Saint-Hilaire IG (1837) Histoire générale et particulière des anomalies de l'organisation chez l'homme et les animaux: ouvrage comprenant des recherches sur les caractères, la classification, l'influence physiologique et pathologique, les rapports généraux, les lois et les causes des monstruosités, variétés et vices de conformation, ou traité de tératologie (Vol. 1). Établissement encyclographique

    Google Scholar 

  • Sánchez-García M, Ryberg M, Khan FK, Varga T, Nagy LG, Hibbett DS (2020) Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. PNAS 117(51):32528–32534

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato H, Toju H (2019) Timing of evolutionary innovation: scenarios of evolutionary diversification in a species-rich fungal clade, Boletales. New Phytol 222(4):1924–1935

    Article  PubMed  Google Scholar 

  • Savile DBO (1955) A phylogeny of the Basidiomycetes. Can J Bot 33(1):60–104

    Article  Google Scholar 

  • Savile DBO (1968) Possible interrelationships between fungal groups. The Fungi, An Advanced Treatise, 649–675

    Google Scholar 

  • Schröter J (1876) Über die Entwicklung und die systematische Stellung von Tulostoma Pers. Cohn’s Beiträge zur Biologie d. Pflanzen 2:65–71

    Google Scholar 

  • Shea BT (1989) Heterochrony in human evolution: the case for neoteny reconsidered. Am J Phys Anthropol 32(S10):69–101

    Article  Google Scholar 

  • Sheedy EM, Ryberg M, Lebel T, May TW, Bougher NL, Matheny PB (2016) Dating the emergence of truffle-like fungi in Australia, by using an augmented meta-analysis. Aust Syst Bot 29(5):284–302

    Article  Google Scholar 

  • Sheedy EM, Van de Wouw AP, Howlett BJ, May TW (2013) Multigene sequence data reveal morphologically cryptic phylogenetic species within the genus Laccaria in southern Australia. Mycologia 105(3):547–563

    Article  CAS  PubMed  Google Scholar 

  • Singer R (1958) The meaning of the affinity of the Secotiaceae with the Agaricales. Sydowia 12(1):43

    Google Scholar 

  • Singer R, Smith AH (1960) Studies on Secotiaceous fungi IX the Astrogastraceous series. Mem Torrey Bot Club 21(3):1–112

    Google Scholar 

  • Skrede I, Engh IB, Binder M, Carlsen T, Kauserud H, Bendiksby M (2011) Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. BMC Evol Biol 11(1):1–13

    Article  Google Scholar 

  • Smith AH, Singer R (1959) Studies on Secotiaceous fungi-IV: Gastroboletus, Truncocolumella and Chamonixia. Brittonia:205–223

    Google Scholar 

  • Smith ME, Schell KJ, Castellano MA, Trappe MJ, Trappe JM (2013) The enigmatic truffle Fevansia aurantiaca is an ectomycorrhizal member of the Albatrellus lineage. Mycorrhiza 23(8):663–668

    Article  PubMed  Google Scholar 

  • Smith ME, Amses KR, Elliott TF, Obase K, Aime MC, Henkel TW (2015) New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov.(Boletaceae, Boletales). IMA fungus 6(2):297–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith ME, Castellano MA, Frank JL (2018) Hymenogaster macmurphyi and Splanchnomyces behrii are sequestrate species of Xerocomellus from the western United States. Mycologia 110(3):605–617

    Article  PubMed  Google Scholar 

  • Stewart EL (1974) The genus Gautieria Vitt. (hymenogastrales-basidiomycetes). Dissertation,. Oregon State University

    Google Scholar 

  • Stewart EL, Trappe JM (1975) Gautieria albida and Hymenogaster monosporus sp. nov. Trans Brit Mycol Soc 65:330–332

    Article  Google Scholar 

  • Stielow B, Bratek Z, Orczán AKI, Rudnoy S, Hensel G, Hoffmann P, Göker M et al (2011) Species delimitation in taxonomically difficult fungi: the case of Hymenogaster. PLoS One 6(1):e15614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunhede SI (1993) Geastraceae (Basidiomycotina): morphology, ecology, and systematics with special emphasis on the North European species. Synopsis Fungorum 1

    Google Scholar 

  • Takhtajan A (1969) Flowering plants: origin and dispersal. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Takhtajan A (1976) Neoteny and the origin of flowering plants. Origin and early evolution of angiosperms. CB Beck, ed.

    Google Scholar 

  • Talbot PHB (1973) Basidial morphology and hymenophoral development in Rhizopogon. Persoonia 7(2):339–350

    Google Scholar 

  • Theißen G (2009) Saltational evolution: hopeful monsters are here to stay. Theory Biosci 128(1):43–51

    Article  PubMed  Google Scholar 

  • Thiers HD (1984) The secotioid syndrome. Mycologia 76(1):1–8

    Article  Google Scholar 

  • Thompson DW (1942) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Tilley SG (1973) Life histories and natural selection in populations of the salamander Desmognathus ochrophaeus. Ecology 54(1):3–17

    Article  Google Scholar 

  • Trappe JM, Castellano MA (2000) New sequestrate Ascomycota and Basidiomycota covered by the Northwest Forest Plan. Mycotaxon 75:153–179

    Google Scholar 

  • Trappe JM, Castellano MA, Halling RE, Osmundson TW, Binder M, Fechner N, Malajczuk N (2013) Australasian sequestrate fungi 18: Solioccasus polychromus gen. & sp. nov., a richly colored, tropical to subtropical, hypogeous fungus. Mycologia 105(4):888–895. https://doi.org/10.3852/12-046

    Article  PubMed  Google Scholar 

  • Trappe MJ, Smith ME, Hobbie EA (2015) Exploring the phylogenetic affiliations and the trophic mode of Sedecula pulvinata (Sedeculaceae). Mycologia 107(4):688–696

    Article  CAS  PubMed  Google Scholar 

  • Truong C, Sánchez-Ramírez S, Kuhar F, Kaplan Z, Smith ME (2017a) The Gondwanan connection–Southern temperate Amanita lineages and the description of the first sequestrate species from the Americas. Fungal Biol 121(8):638–651

    Article  PubMed  Google Scholar 

  • Truong C, Mujic AB, Healy R, Kuhar F, Furci G, Torres D, Sandoval-Leiva P, Fernández N, Escobar JM, Moretto A, Palfner G, Pfister D, Nouhra E, Swenie R, Sánchez-García M, Matheny PB, Smith ME (2017b) How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214(3):913–919

    Article  PubMed  Google Scholar 

  • Varga T, Földi C, Bense V, Nagy LG (2022) Radiation of mushroom-forming fungi correlates with novel modes of protecting sexual fruiting bodies. Fungal Biol 126(9):556–565

    Article  CAS  PubMed  Google Scholar 

  • Vidal JM, Alvarado P, Loizides M, Konstantinidis G, Chachuła P, Mleczko P, Llistosella J (2019) A phylogenetic and taxonomic revision of sequestrate Russulaceae in Mediterranean and temperate Europe. Persoonia 42(1):127–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virágh M, Merényi Z, Csernetics Á, Földi C, Sahu N, Liu XB, Hibbet DS, Nagy LG (2021) Evolutionary morphogenesis of sexual fruiting bodies in Basidiomycota: toward a new Evo-devo synthesis. Microbiol Mol Biol Rev 86(1):e00019–e00021

    PubMed  PubMed Central  Google Scholar 

  • Vlk L, Tedersoo L, Antl T, Větrovský T, Abarenkov K, Pergl J, Albrechtová J, Vosátka M, Baldrian P, Pyšek P, Kohout P (2020) Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. New Phytol 227(5)

    Google Scholar 

  • Voss SR (1995) Genetic basis of paedomorphosis in the axolotl, Ambystoma mexicanum: a test of the single-gene hypothesis. J Hered 86(6):441–447

    Article  Google Scholar 

  • Wake DB (1991) Homoplasy: the result of natural selection, or evidence of design limitations? Am Nat 138(3):543–567

    Article  Google Scholar 

  • Wallace AR (1871) Contributions to the theory of natural selection. Macmillan and Company, London

    Google Scholar 

  • Watling R, Martín MP (2003) A sequestrate Psilocybe from Scotland. Bot J Scotl 55(2):245–257

    Article  Google Scholar 

  • Wilson AW, Binder M, Hibbett DS (2008) Does gasteromycetation in the Agaricomycetes represent an evolutionary dead-end or a key innovation? A study with emphasis on the Sclerodermatineae. Annual Meeting of the Mycological Society of America, State College, PA

    Google Scholar 

  • Wilson AW, Binder M, Hibbett DS (2011) Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis. Evol Int J Org Evol 65(5):1305–1322

    Article  Google Scholar 

  • Wirz KM (1950) Zur quantitativen Bestimmung der Rangordnung bei Säugetieren: Studien über Cerebralisation Dissertation. Universität Basel

    Google Scholar 

  • Xu YY, Jian SP, Mao N, Yang ZL, Fan L (2022a) Gomphocantharellus, a new genus of Gomphales. Mycologia 114(4):748–756

    Article  CAS  PubMed  Google Scholar 

  • Xu YY, Yan XY, Li T, Zhao TY, Lv JC, Fan L (2022b) The taxonomic revision of Melanogaster (Paxillaceae, Boletales) in China based on molecular and morphological evidence. Mycol Prog 21:98

    Article  Google Scholar 

  • Zeller SM (1941) Further notes on fungi. Mycologia 33(2):196–214

    Article  Google Scholar 

  • Zeller SM, Dodge CW (1936) Elasmomyces, Arcangeliella, and Macowanites. Ann Mo Bot Gard 23(4):599–638

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FONCyT (Grant PICT 2018 – 3781), a Fulbright Fellowship and a Friends of Farlow Fellowship (to FK) and also the US National Science Foundation grant DEB-1354802 (to M.E.S.) and NIFA-USDA award FLA-PLP-005289 (to MES).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuhar, F., Nouhra, E., Pfister, D.H., Smith, M.E. (2023). Paedomorphosis and Evolution of Sequestrate Basidiomycetes. In: Pöggeler, S., James, T. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-29199-9_13

Download citation

Publish with us

Policies and ethics