Skip to main content

The Use of Metaverse in the Healthcare Sector: Analysis and Applications

  • Chapter
  • First Online:
The Future of Metaverse in the Virtual Era and Physical World

Part of the book series: Studies in Big Data ((SBD,volume 123))

Abstract

With the use of blockchain, Internet of Things, virtual platform/telecommunications network, artificial intelligence and the fourth industrial revolution, the essential demand for digital transition within the health care settings has increased as an outcome of the 2019 coronavirus illness outbreak and the fourth industrial revolution. The evolution of virtual environments with three-dimensional (3D) spaces and avatars, known as metaverse, has slowly gained acceptance in the field of health care. These environments may be especially useful for patient-facing platforms (such as platforms for telemedicine), functional uses (such as meeting management), digital education (such as modeled medical and surgical learning), treatments and diagnoses. This chapter offers the most recent state-of-the-art metaverse services and applications and a growing problem when it comes to using it in the healthcare sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holloway, D.: Virtual worlds and health: healthcare delivery and simulation opportunities. In: Virtual Worlds and Metaverse Platforms: New Communication and Identity Paradigms, pp. 251–270. IGI Global: Hershey, PA, USA (2012)

    Google Scholar 

  2. Seo, K.R., Park, S.H.: Opportunities and Challenges of the Metaverse Government. National Information Society Agency, Daegu, Korea (2021)

    Google Scholar 

  3. Ghanbarzadeh, R., Ghapanchi, A.H., Blumenstein, M., Talaei-Khoei, A.: A decade of research on the use of three-dimensional virtual worlds in health care: a systematic literature review. J. Med. Internet Res.16, e3097 (2014). [CrossRef] [PubMed]

    Google Scholar 

  4. Kovacev, N.: Metaverse and medicine. In: Proceedings of the 2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 25–26 May 2022; p. 1

    Google Scholar 

  5. Thomason, J.: Metahealth-How will the metaverse change health care? J. Metaverse 1, 13–16 (2021)

    Google Scholar 

  6. Bourlakis, M.: Li PFJECR. Retail spatial evolution: paving the way from traditional to metaverse retailing (2009)

    Google Scholar 

  7. Yang, D.W., Zhou, J., Song, Y.L., Bai, C.X.: Metaverse in medicine. Clinical eHealth; epub ahead of print

    Google Scholar 

  8. Bai, C.X.: Practical Medical Internet of Things. People’s Medical Publishing House, Beijing (2014)

    Google Scholar 

  9. Bai, C.X.: Guidelines on Applying Medical Internet of Things for the Graded Diagnosis and Treatment. People’s Medical Publishing House, Beijing (2015)

    Google Scholar 

  10. Bai, C.X., Zhao, J.L.: Medical Internet of Things. Science Press, Beijing (2016)

    Google Scholar 

  11. Bai, C.: Letter from China. Respirology 23, 718–719 (2018)

    Article  Google Scholar 

  12. Su, X., Bai, C.X.: Leveraging cloud computing and terminal to embrace the new era of medical internet of things. China Med Pharm. 6, 1–3 (2016)

    Google Scholar 

  13. Grieves, M.: Virtually intelligent product systems: digital and physical Twins. In: Complex Systems Engineering. Theory and Practice (2019)

    Google Scholar 

  14. Sim, I.: Mobile devices and health. N Engl J Med. 381, 956–968 (2019)

    Article  Google Scholar 

  15. Darwish, A., Sarkar, M., Panerjee, S., Elhoseny, M.: Aboul Ella Hassanien, exploring new vista of intelligent collaborative filtering: a restaurant recommendation paradigm. J. Comput. Sci. 27, 168–182 (2018)

    Article  Google Scholar 

  16. Eid, H.F., Darwish, A., Hassanien, A.E., Kim, T.: Intelligent hybrid anomaly network intrusion detection system. In: Communication and Networking. FGCN 2011. Communications in Computer and Information Science, vol. 265. FGCN 2011, Part I, CCIS 265, pp. 209–218. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  17. Wu, J.C.Z., Chen, P., He, C.C., Ke, D.: User information behavior from the metaverse perspective: framework and prospects. J. Inform. Resour. Manag., 1–17

    Google Scholar 

  18. Dawei Yang, C.B.: Development status and trend of Internet of things in the medical field. China Med. Inform. Herald. 36(19), 1 (2021)

    Google Scholar 

  19. Nadini, M., Alessandretti, L., Giacinto, F.D., Martino, M., Aiello, L.M., Baronchelli, A.: Mapping the NFT revolution: market trends, trade networks and visual features. Papers (2021)

    Google Scholar 

  20. Gunasekeran, D.V., Tham, Y.C., Ting, D.S., et al.: Digital health during COVID-19: lessons from operationalising new models of care in ophthalmology. Lancet Digit Health. 3, e124–e134 (2021)

    Article  Google Scholar 

  21. Li, J.P.O., Shantha, J., Wong, T.Y., et al.: Preparedness among ophthalmologists: during and beyond the COVID-19 pandemic. Ophthalmology 127, 569–572 (2020)

    Article  Google Scholar 

  22. Vial, G.: Understanding digital transformation: a review and a research agenda. J. Strateg. Inf. Syst. 28, 118–144 (2019)

    Article  Google Scholar 

  23. Nair, A.G., Gandhi, R.A., Natarajan, S.: Effect of COVID-19 related lockdown on ophthalmic practice and patient care in India: results of a survey. Indian J. Ophthalmol. 68, 725–730 (2020)

    Article  Google Scholar 

  24. Moss, H.E., Lai, K.E., Ko, M.W.: Survey of telehealth adoption by neuro-ophthalmologists during the COVID-19 pandemic: benefits, barriers, and utility. J. Neuroophthalmol. 40, 346–355 (2020)

    Article  Google Scholar 

  25. Wu, X., Chen, J., Yun, D., et al.: Effectiveness of an ophthalmic hospital based virtual service during the COVID-19 pandemic. Ophthalmology 128, 942–945 (2021)

    Article  Google Scholar 

  26. Kilduff, C.L., Thomas, A.A., Dugdill, J., et al.: Creating the Moorfields’ virtual eye casualty: video consultations to provide emergency teleophthalmology care during and beyond the COVID-19 pandemic. BMJ Health Care Inform. 27, e100179 (2020)

    Article  Google Scholar 

  27. Bourdon, H., Jaillant, R., Ballino, A., et al.: Teleconsultation in primary ophthalmic emergencies during the COVID-19 lockdown in Paris: experience with 500 patients in March and April 2020. J. Fr. Ophtalmol. 43, 577–585 (2020)

    Article  Google Scholar 

  28. Tan, J.C., Poh, E.W., Srinivasan, S., et al.: A pilot trial of tele-ophthalmology for diagnosis of chronic blurred vision. J. Telemed. Telecare 19, 65–69 (2013)

    Article  Google Scholar 

  29. Wong, J.K.W., Shih, K.C., Chan, J.C.H., et al.: Tele-ophthalmology amid COVID-19 pandemic-Hong Kong experience. Graefes Arch. Clin. Exp. Ophthalmol. 259, 1663 (2021)

    Article  Google Scholar 

  30. Kang, S., Thomas, P.B.M., Sim, D.A., et al.: Oculoplastic video-based telemedicine consultations: Covid-19 and beyond. Eye (Lond). 34, 1193–1195 (2020)

    Article  Google Scholar 

  31. Deshmukh, A.V., Badakere, A., Sheth, J., et al.: Pivoting to teleconsultation for pediatric ophthalmology and strabismus: our experience during COVID-19 times. Indian J. Ophthalmol. 68, 1387 (2020)

    Article  Google Scholar 

  32. Huang, E.Y., Knight, S., Guetter, C.R., et al.: Telemedicine and telementoring in the surgical specialties: a narrative review. Am. J. Surg. 218, 760–766 (2019)

    Article  Google Scholar 

  33. Erridge, S., Yeung, D.K.T., Patel, H.R.H., et al.: Telementoring of surgeons: a systematic review. Surg. Innov. 26, 95–111 (2019)

    Article  Google Scholar 

  34. Camara, J.G., Zabala, R.R., Henson, R.D., et al.: Teleophthalmology: the use of real-time telementoring to remove an orbital tumor. Ophthalmology 107, 1468–1471 (2000)

    Article  Google Scholar 

  35. Hall, G., Hennessy, M., Barton, J., et al.: Teleophthalmology-assisted corneal foreign body removal in a rural hospital. Telemed. J. E Health 11, 79–83 (2005)

    Article  Google Scholar 

  36. Lu, E.S., Reppucci, V.S., Houston, S.K.S., et al.: Three-dimensional telesurgery and remote proctoring over a 5G network. Digit. J. Ophthalmol. 27, 38–43 (2021)

    Article  Google Scholar 

  37. Hung, A.J., Chen, J., Shah, A., et al.: Telementoring and telesurgery for minimally invasive procedures. J. Urol. 199, 355–369 (2018)

    Article  Google Scholar 

  38. Singh, G., Casson, R., Chan, W.: The potential impact of 5G telecommunication technology on ophthalmology. Eye (Lond). 35, 1859–1868 (2021)

    Article  Google Scholar 

  39. Belyea, D.A., Mines, M.J., Yao, W.J., et al.: Telerobotic contact transscleral cyclophotocoagulation of the ciliary body with the diode laser. J. Robot Surg. 8, 49–55 (2014)

    Article  Google Scholar 

  40. Mines, M.J., Bower, K.S., Nelson, B., et al.: Feasibility of telerobotic microsurgical repair of corneal lacerations in an animal eye model. J. Telemed. Telecare. 13, 95–99 (2007)

    Article  Google Scholar 

  41. Tian, W., Fan, M., Zeng, C., et al.: Telerobotic spinal surgery based on 5G network: the first 12 cases. Neurospine. 17, 114–120 (2020)

    Article  Google Scholar 

  42. Bove, P., Stoianovici, D., Micali, S., et al.: Is telesurgery a new reality? Our experience with laparoscopic and percutaneous procedures. J. Endourol. 17, 137–142 (2003)

    Article  Google Scholar 

  43. Waschke, K.A., Coyle, W.: Advances and challenges in endoscopic training. Gastroenterology 154, 1985–1992 (2018). https://doi.org/10.1053/j.gastro.2017.11.293

    Article  Google Scholar 

  44. Koo, H.: Training in lung cancer surgery through the metaverse, including extended reality, in the smart operating room of Seoul National University Bundang Hospital. Korea. J. Educ. Eval. Health Prof. 18, 33 (2021). https://doi.org/10.3352/jeehp.2021.18.33

    Article  Google Scholar 

  45. Skibba, R.: Virtual reality comes of age. Nature 553, 402–403 (2018). https://doi.org/10.1038/d41586-018-00894-w

    Article  Google Scholar 

  46. Ferlitsch, A., Glauninger, P., Gupper, A., Schillinger, M., Haefner, M., Gangl, A., et al.: Evaluation of a virtual endoscopy simulator for training in gastrointestinal endoscopy. Endoscopy 34, 698–702 (2002). https://doi.org/10.1055/s-2002-33456

    Article  Google Scholar 

  47. Ahlberg, G., Hultcrantz, R., Jaramillo, E., Lindblom, A., Arvidsson, D.: Virtual reality colonoscopy simulation: a compulsory practice for the future colonoscopist? Endoscopy 37, 1198–1204 (2005). https://doi.org/10.1055/s-2005-921049

    Article  Google Scholar 

  48. Koch, A.D., Haringsma, J., Schoon, E.J., de Man, R.A., Kuipers, E.J.: A second-generation virtual reality simulator for colonoscopy: validation and initial experience. Endoscopy 40, 735–738 (2008). https://doi.org/10.1055/s-2008-1077508

    Article  Google Scholar 

  49. Koch, A.D., Ekkelenkamp, V.E., Haringsma, J., Schoon, E.J., de Man, R.A., Kuipers, E.J.: Simulated colonoscopy training leads to improved performance during patient-based assessment. Gastrointest Endosc. 81, 630–636 (2015). https://doi.org/10.1016/j.gie.2014.09.014

    Article  Google Scholar 

  50. Blackburn, S.C., Griffin, S.J.: Role of simulation in training the next generation of endoscopists. World J. Gastrointest Endosc. 6, 234–239 (2014). https://doi.org/10.4253/wjge.v6.i6.234

    Article  Google Scholar 

  51. Kruglikova, I., Grantcharov, T.P., Drewes, A.M., Funch-Jensen, P.: The impact of constructive feedback on training in gastrointestinal endoscopy using highfidelity virtual-reality simulation: a randomised controlled trial. Gut 59, 181–185 (2010). https://doi.org/10.1136/gut.2009.191825

    Article  Google Scholar 

  52. Harpham-Lockyer, L., Laskaratos, F.M., Berlingieri, P., Epstein, O.: Role of virtual reality simulation in endoscopy training. World J. Gastrointest. Endosc. 7, 1287–1294 (2015). https://doi.org/10.4253/wjge.v7.i18.1287

    Article  Google Scholar 

  53. Hashimoto, D.A., Petrusa, E., Phitayakorn, R., Valle, C., Casey, B., Gee, D.: A proficiency-based virtual reality endoscopy curriculum improves performance on the fundamentals of endoscopic surgery examination. Surg. Endosc. 32, 1397–1404 (2018). https://doi.org/10.1007/s00464-017-5821-5Frontiers

    Article  Google Scholar 

  54. Neumann, M., Mayer, G., Ell, C., Felzmann, T., Reingruber, B., Horbach, T., et al.: The Erlangen Endo-Trainer: life-like simulation for diagnostic and interventional endoscopic retrograde cholangiography. Endoscopy 32, 906–910 (2000). https://doi.org/10.1055/s-2000-8090

    Article  Google Scholar 

  55. Grover, S.C., Garg, A., Scaffidi, M.A., Yu, J.J., Plener, I.S., Yong, E., et al.: Impact of a simulation training curriculum on technical and nontechnical skills in colonoscopy: a randomized trial. Gastrointest Endosc. 82, 1072–1079 (2015). https://doi.org/10.1016/j.gie.2015.04.008

    Article  Google Scholar 

  56. Walsh, C.M., Scaffidi, M.A., Khan, R., Arora, A., Gimpaya, N., Lin, P., et al.: non-technical skills curriculum incorporating simulation-based training improves performance in colonoscopy among novice endoscopists: Randomized controlled trial. Dig. Endosc. 32, 940–948 (2020). https://doi.org/10.1111/den.13623

    Article  Google Scholar 

  57. Piskorz, M.M., Wonaga, A., Bortot, L., Linares, M.E., Araya, V., Olmos, J.I., et al.: Impact of a virtual endoscopy training curriculum in novice endoscopists: first experience in Argentina. Digest Dis. Sci. 65, 3072–3078 (2020). https://doi.org/10.1007/s10620-020-06532-8

    Article  Google Scholar 

  58. Khan, R., Plahouras, J., Johnston, B.C., Scaffidi, M.A., Grover, S.C., Walsh, C.M.: Virtual reality simulation training in endoscopy: a Cochrane review and meta-analysis. Endoscopy 51, 653–664 (2019). https://doi.org/10.1055/a-0894-4400

    Article  Google Scholar 

  59. Ward, S.T., Hancox, A., Mohammed, M.A., Ismail, T., Griffiths, E.A., Valori, R., et al.: The learning curve to achieve satisfactory completion rates in upper GI endoscopy: an analysis of a national training database. Gut 66, 1022–1033 (2017). https://doi.org/10.1136/gutjnl-2015-310443

    Article  Google Scholar 

  60. Castro, P.T., Araujo Jr. E., Lopes, J., Ribeiro, G., Werner, H., Placenta accreta: Virtual reality from 3D images of magnetic resonance imaging. J. Clin. Ultrasound, 1–2 (2021)

    Google Scholar 

  61. Uruthiralingam, U., Rea, P.M.: Augmented and virtual reality in anatomical education–a systematic review. Adv. Exp. Med. Biol. 1235, 89 (2020)

    Article  Google Scholar 

  62. Werner, H., Lopes Dos Santos, J.R., Ribeiro, G., Belmonte, S.L., Daltro, P., Araujo Jr. E.: Combination of ultrasound, magnetic resonance imaging and virtual reality technologies to generate immersive three-dimensional fetal images. Ultrasound Obstet. Gynecol. 50(2), 271–272 (2017)

    Google Scholar 

  63. Werner, H., Ribeiro, G., Arcoverde, V., Lopes, J., Velho, L.: The use of metaverse in fetal medicine and gynecology. Eur. J. Radiol. 150, 110241 (2022). https://doi.org/10.1016/j.ejrad.2022.110241

    Article  Google Scholar 

  64. Spatial.io, URL: https://spatial.io/

  65. Lin Tong, D.Y., Bai, C.: Implications of lung cancer prevention and treatment in the United States for China. Int. J. Respiration. 41(5), 4 (2021)

    Google Scholar 

  66. Anter, A.M., Moemen, Y.S., Darwish, A., Hassanien, A.E.: Multi-target QSAR modelling of chemo-genomic data analysis based on extreme learning machine. J. Knowl. Based Syst., Elsevier Knowl. Based Syst., 188, 104977 (2020). https://doi.org/10.1016/j.knosys.2019.104977

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania. A. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, R.A., Mohammed, K.K., Darwish, A., Hassanien, A.E. (2023). The Use of Metaverse in the Healthcare Sector: Analysis and Applications. In: Hassanien, A.E., Darwish, A., Torky, M. (eds) The Future of Metaverse in the Virtual Era and Physical World. Studies in Big Data, vol 123. Springer, Cham. https://doi.org/10.1007/978-3-031-29132-6_5

Download citation

Publish with us

Policies and ethics