Skip to main content

Bone and Soft Tissues

  • Chapter
  • First Online:
Multimodality Imaging and Intervention in Oncology

Abstract

Imaging is essential to detect, characterize, and monitor bone and soft tissue tumors. Further, imaging has gained much space as a guidance for mini-invasive and highly effective procedures that can be considered as valuable alternative options to surgery in specific settings. A multimodality and multidisciplinary approach is required to correctly manage patients with musculoskeletal tumors, which are generally treated in reference centers. In this chapter, we provide an up-to-date overview of imaging characteristics of BT and STT, focusing on the most common tumors, and image-guided interventional procedures generally used to treat these lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii113–23. https://doi.org/10.1093/annonc/mdu256.

    Article  Google Scholar 

  2. ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii102–12. https://doi.org/10.1093/annonc/mdu254.

    Article  Google Scholar 

  3. Bellelli A, Silvestri E, Barile A, Albano D, Aliprandi A, Caudana R, et al. Position paper on magnetic resonance imaging protocols in the musculoskeletal system (excluding the spine) by the Italian College of Musculoskeletal Radiology. Radiol Med. 2019;124:522–38. https://doi.org/10.1007/s11547-019-00992-3.

    Article  PubMed  Google Scholar 

  4. Albano D, Messina C, Gitto S, Papakonstantinou O, Sconfienza LM. Differential diagnosis of spine tumors: my favorite mistake. Semin Musculoskelet Radiol. 2019;23:26–35. https://doi.org/10.1055/s-0038-1675551.

    Article  PubMed  Google Scholar 

  5. Pozzi G, Albano D, Messina C, Angileri SA, Mnayyis A, Galbusera F, et al. Solid bone tumors of the spine: diagnostic performance of apparent diffusion coefficient measured using diffusion-weighted MRI using histology as a reference standard. J Magn Reson Imaging. 2018;47:1034–42. https://doi.org/10.1002/jmri.25826.

    Article  PubMed  Google Scholar 

  6. Albano D, Patti C, Lagalla R, Midiri M, Galia M. Whole-body MRI, FDG-PET/CT, and bone marrow biopsy, for the assessment of bone marrow involvement in patients with newly diagnosed lymphoma. J Magn Reson Imaging. 2017;45:1082–9. https://doi.org/10.1002/jmri.25439.

    Article  PubMed  Google Scholar 

  7. Costelloe CM, Chuang HH, Madewell JE. FDG PET/CT of primary bone tumors. AJR Am J Roentgenol. 2014;202:W521–31. https://doi.org/10.2214/AJR.13.11833.

    Article  PubMed  Google Scholar 

  8. Galia M, Albano D, Narese D, Patti C, Chianca V, Di Pietto F, et al. Whole-body MRI in patients with lymphoma: collateral findings. Radiol Med. 2016;121:793–800. https://doi.org/10.1007/s11547-016-0658-x.

    Article  PubMed  Google Scholar 

  9. Persaud T. The polka-dot sign. Radiology. 2008;246:980–1. https://doi.org/10.1148/radiol.2463050903.

    Article  PubMed  Google Scholar 

  10. Baudrez V, Galant C, Vande Berg BC. Benign vertebral hemangioma: MR-histological correlation. Skelet Radiol. 2001;30:442–6. https://doi.org/10.1007/s002560100390.

    Article  CAS  Google Scholar 

  11. Acosta FL Jr, Dowd CF, Chin C, Tihan T, Ames CP, Weinstein PR. Current treatment strategies and outcomes in the management of symptomatic vertebral hemangiomas. Neurosurgery. 2006;58(2):287–95. https://doi.org/10.1227/01.NEU.0000194846.55984.C8.

    Article  PubMed  Google Scholar 

  12. Nakayama M, Okizaki A, Ishitoya S, Aburano T. “Hot” vertebra on (18)F-FDG PET scan: a case of vertebral hemangioma. Clin Nucl Med. 2012;37:1190–3. https://doi.org/10.1097/RLU.0b013e3182708628.

    Article  PubMed  Google Scholar 

  13. Walden MJ, Murphey MD, Vidal JA. Incidental enchondromas of the knee. AJR Am J Roentgenol. 2008;190:1611–5. https://doi.org/10.2214/AJR.07.2796.

    Article  PubMed  Google Scholar 

  14. Gabos PG, Bowen JR. Epiphyseal-metaphyseal Enchondromatosis. A new clinical entity. J Bone Joint Surg Am. 1998;80:782–92. https://doi.org/10.2106/00004623-199806000-00002.

    Article  CAS  PubMed  Google Scholar 

  15. Flemming DJ, Murphey MD. Enchondroma and chondrosarcoma. Semin Musculoskelet Radiol. 2000;4:59–71. https://doi.org/10.1055/s-2000-6855.

    Article  CAS  PubMed  Google Scholar 

  16. Skeletal Lesions Interobserver Correlation Among Expert Diagnosticians (SLICED) Study Group. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg Am. 2007;89:2113–23. https://doi.org/10.2106/JBJS.F.01530.

    Article  Google Scholar 

  17. Albano D, Patti C, La Grutta L, Grassedonio E, Mulè A, Brancatelli G, et al. Osteonecrosis detected by whole body magnetic resonance in patients with Hodgkin lymphoma treated by BEACOPP. Eur Radiol. 2017;27:2129–36. https://doi.org/10.1007/s00330-016-4535-8.

    Article  PubMed  Google Scholar 

  18. Murphey MD, Flemming DJ, Boyea SR, Bojescul JA, Sweet DE, Temple HT. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics. 1998;18:1213–37. https://doi.org/10.1148/radiographics.18.5.9747616.

    Article  CAS  PubMed  Google Scholar 

  19. Campanacci M, Laus M, Boriani SJ, Bone Joint Surg Br. Multiple non-ossifying fibromata with extraskeletal anomalies: a new syndrome? J Bone Joint Surg Br. 1983;65:627–32.

    Article  CAS  PubMed  Google Scholar 

  20. Jee WH, Choe BY, Kang HS, Suh KJ, Suh JS, Ryu KN, et al. Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology. 1998;209:197–202. https://doi.org/10.1148/radiology.209.1.9769832.

    Article  CAS  PubMed  Google Scholar 

  21. Goodin GS, Shulkin BL, Kaufman RA, McCarville MB. PET/CT characterization of fibroosseous defects in children: 18F-FDG uptake can mimic metastatic disease. AJR Am J Roentgenol. 2006;187:1124–8. https://doi.org/10.2214/AJR.06.0171.

    Article  PubMed  Google Scholar 

  22. Davies AM, Sundaram M, James SLJ. Imaging of bone tumors and tumor-like lesions: techniques and applications. Dordrecht: Springer; 2009. p. 503.

    Book  Google Scholar 

  23. Burke C, Link T, O'Donnell RJ, Cho SJ, Motamedi D. Giant cell tumor of bone: documented progression over 4 years from its origin at the metaphysis to the articular surface. Case Rep Radiol. 2016;2016:9786925. https://doi.org/10.1155/2016/9786925.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chakarun CJ, Forrester DM, Gottsegen CJ, Patel DB, White EA, Matcuk GR Jr. Giant cell tumor of bone: review, mimics, and new developments in treatment. Radiographics. 2013;33:197–211. https://doi.org/10.1148/rg.331125089.

    Article  PubMed  Google Scholar 

  25. Oueriagli SN, Ghfir I, El Guerrouj H, Raïs NB. What role for radiobiphosphonates bone scintigraphy in the monitoring of an unusual bone giant cell tumor: a case report and literature review. Am J Nucl Med Mol Imaging. 2016;6:128–34.

    PubMed  PubMed Central  Google Scholar 

  26. Levine E, DeSmet AA, Neff JR, Martin NL. Scintigraphic evaluation of giant cell tumor of bone. AJR Am J Roentgenol. 1984;148:343–8.

    Article  Google Scholar 

  27. Muheremu A, Ma Y, Huang Z, Shan H, Li Y, Niu X. Diagnosing giant cell tumor of the bone using positron emission tomography/computed tomography: a retrospective study of 20 patients from a single center. Oncol Lett. 2017;14:1985–8. https://doi.org/10.3892/ol.2017.6379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodallec MH, Feydy A, Larousserie F, Anract P, Campagna R, Babinet A, et al. Diagnostic imaging of solitary tumors of the spine: what to do and say. Radiographics. 2008;28:1019–41. https://doi.org/10.1148/rg.284075156.

    Article  PubMed  Google Scholar 

  29. Bonakdarpour A, Levy WM, Aegerter E. Primary and secondary aneurysmal bone cyst: a radiological study of 75 cases. Radiology. 1978;126:75–83. https://doi.org/10.1148/126.1.75.

    Article  CAS  PubMed  Google Scholar 

  30. Weber MA, Lalam R. Bone and soft tissue tumors. Semin Musculoskelet Radiol. 2019;23:1–2. https://doi.org/10.1055/s-0038-1676291.

    Article  PubMed  Google Scholar 

  31. Cortese MC, Albano D, Messina C, Perrucchini G, Gallazzi E, Gallazzi MB, et al. Multicentric, multifocal, and recurrent osteoid osteoma of the hip: first case report. BMC Musculoskelet Disord. 2019;20:171. https://doi.org/10.1186/s12891-019-2552-x.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Galgano MA, Goulart CR, Iwenofu H, Chin LS, Lavelle W, Mendel E. Osteoblastomas of the spine: a comprehensive review. Neurosurg Focus. 2016;41:E4. https://doi.org/10.3171/2016.5.FOCUS16122.

    Article  PubMed  Google Scholar 

  33. Yin H, Zhou W, Yu H, Li B, Zhang D, Wu Z, et al. Clinical characteristics and treatment options for two types of osteoblastoma in the mobile spine: a retrospective study of 32 cases and outcomes. Eur Spine J. 2014;23:411–6. https://doi.org/10.1007/s00586-013-3049-1.

    Article  PubMed  Google Scholar 

  34. Boscainos PJ, Cousins GR, Kulshreshtha R, Oliver TB, Papagelopoulos PJ. Osteoid osteoma. Orthopedics. 2013;36:792–800. https://doi.org/10.3928/01477447-20130920-10.

    Article  PubMed  Google Scholar 

  35. Laurence N, Epelman M, Markowitz RI, Jaimes C, Jaramillo D, Chauvin NA. Osteoid osteomas: a pain in the night diagnosis. Pediatr Radiol. 2012;42:1490–501. https://doi.org/10.1007/s00247-012-2495-y.

    Article  PubMed  Google Scholar 

  36. Papathanassiou ZG, Megas P, Petsas T, Papachristou DJ, Nilas J, Siablis D. Osteoid osteoma: diagnosis and treatment. Orthopedics. 2008;31:1118. https://doi.org/10.3928/01477447-20081101-20.

    Article  PubMed  Google Scholar 

  37. Liu PT, Kujak JL, Roberts CC, de Chadarevian JP. The vascular groove sign: a new CT finding associated with osteoid osteomas. AJR Am J Roentgenol. 2011;196:168–73. https://doi.org/10.2214/AJR.10.4534.

    Article  PubMed  Google Scholar 

  38. Bhure U, Roos JE, Strobel K. Osteoid osteoma: multimodality imaging with focus on hybrid imaging. Eur J Nucl Med Mol Imaging. 2019;46:1019–36. https://doi.org/10.1007/s00259-018-4181-2.

    Article  PubMed  Google Scholar 

  39. Riahi H, Mechri M, Barsaoui M, Bouaziz M, Vanhoenacker F, Ladeb M. Imaging of benign tumors of the osseous spine. J Belg Soc Radiol. 2018;102:13. https://doi.org/10.5334/jbsr.1380.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang Z, Fang T, Si Z, Li Y, Zhang L, Zheng C, et al. Imaging algorithm and multimodality evaluation of spinal osteoblastoma. BMC Musculoskelet Disord. 2020;21:240. https://doi.org/10.1186/s12891-020-03252-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O'Sullivan GJ, Carty FL, Cronin CG. Imaging of bone metastasis: an update. World J Radiol. 2015;7:202–11. https://doi.org/10.4329/wjr.v7.i8.202.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 2008;27:41–55. https://doi.org/10.1007/s10555-007-9109-4.

    Article  PubMed  Google Scholar 

  43. Cuccurullo V, Cascini GL, Tamburrini O, Rotondo A, Mansi L. Bone metastases radiopharmaceuticals: an overview. Curr Radiopharm. 2013;6:41–7. https://doi.org/10.2174/1874471011306010007.

    Article  CAS  PubMed  Google Scholar 

  44. Vassiliou V, Andreopoulos D, Frangos S, Tselis N, Giannopoulou E, Lutz S. Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities. Clin Oncol (R Coll Radiol). 2011;23:632–45. https://doi.org/10.1016/j.clon.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  45. Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol. 2011;21:2604–17. https://doi.org/10.1007/s00330-011-2221-4.

    Article  PubMed  Google Scholar 

  46. Albano D, Stecco A, Micci G, Sconfienza LM, Colagrande S, Reginelli A, et al. Whole-body magnetic resonance imaging (WB-MRI) in oncology: an Italian survey. Radiol Med. 2020;126:299. https://doi.org/10.1007/s11547-020-01242-7.

    Article  PubMed  Google Scholar 

  47. Roberts CC, Daffner RH, Weissman BN, Bancroft L, Bennett DL, Blebea JS, et al. ACR appropriateness criteria on metastatic bone disease. J Am Coll Radiol. 2010;7:400–9. https://doi.org/10.1016/j.jacr.2010.02.015.

    Article  PubMed  Google Scholar 

  48. Zhang L, Chen L, Xie Q, Zhang Y, Cheng L, Li H, et al. A comparative study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and (99m)Tc-MDP whole-body bone scanning for imaging osteolytic bone metastases. BMC Med Imaging. 2015;15:7. https://doi.org/10.1186/s12880-015-0047-2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N. Meta-analysis: comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med. 2008;33:97–101. https://doi.org/10.1097/RLU.0b013e31815f23b7.

    Article  PubMed  Google Scholar 

  50. Pianou NK, Stavrou PZ, Vlontzou E, Rondogianni P, Exarhos DN, Datseris IE. More advantages in detecting bone and soft tissue metastases from prostate cancer using 18 F-PSMA PET/CT. Hell J Nucl Med. 2019;22:6–9. https://doi.org/10.1967/s002449910952.

    Article  PubMed  Google Scholar 

  51. Mulligan ME, McRae GA, Murphey MD. Imaging features of primary lymphoma of bone. AJR Am J Roentgenol. 1999;173:1691–7. https://doi.org/10.2214/ajr.173.6.10584821.

    Article  CAS  PubMed  Google Scholar 

  52. Krishnan A, Shirkhoda A, Tehranzadeh J, Armin AR, Irwin R, Les K. Primary bone lymphoma: radiographic-MR imaging correlation. Radiographics. 2003;23:1371–87. https://doi.org/10.1148/rg.236025056.

    Article  PubMed  Google Scholar 

  53. de Camargo OP, dos Santos Machado TM, Croci AT, de Oliveira CRGCM, Giannotti MA, Baptista AM, et al. Primary bone lymphoma in 24 patients treated between 1955 and 1999. Clin Orthop. 2002;397:271–80. https://doi.org/10.1097/00003086-200204000-00031.

    Article  Google Scholar 

  54. Albano D, La Grutta L, Grassedonio E, Patti C, Lagalla R, Midiri M, et al. Pitfalls in whole body MRI with diffusion weighted imaging performed on patients with lymphoma: what radiologists should know. Magn Reson Imaging. 2016;34:922–31. https://doi.org/10.1016/j.mri.2016.04.023.

    Article  PubMed  Google Scholar 

  55. Albano D, Patti C, Matranga D, Lagalla R, Midiri M, Galia M. Whole-body diffusion-weighted MR and FDG-PET/CT in Hodgkin lymphoma: predictive role before treatment and early assessment after two courses of ABVD. Eur J Radiol. 2018;103:90–8. https://doi.org/10.1016/j.ejrad.2018.04.014.

    Article  PubMed  Google Scholar 

  56. Galia M, Albano D, Tarella C, Patti C, Sconfienza LM, Mulè A, et al. Whole body magnetic resonance in indolent lymphomas under watchful waiting: the time is now. Eur Radiol. 2018;28:1187–93. https://doi.org/10.1007/s00330-017-5071-x.

    Article  PubMed  Google Scholar 

  57. Albano D, Patti C, La Grutta L, Agnello F, Grassedonio E, Mulè A, et al. Comparison between whole-body MRI with diffusion-weighted imaging and PET/CT in staging newly diagnosed FDG-avid lymphomas. Eur J Radiol. 2016;85:313–8. https://doi.org/10.1016/j.ejrad.2015.12.006.

    Article  PubMed  Google Scholar 

  58. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of hodgkin and non-hodgkin lymphoma: the lugano classification. J Clin Oncol. 2014;32:3059–68. https://doi.org/10.1200/JCO.2013.54.8800.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Moog F, Kotzerke J, Reske SN. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med. 1999;40:1407–13.

    CAS  PubMed  Google Scholar 

  60. Behzadi AH, Raza SI, Carrino JA, Kosmas C, Gholamrezanezhad A, Basques K, et al. Applications of PET/CT and PET/MR imaging in primary bone malignancies. PET Clin. 2018;13:623–34. https://doi.org/10.1016/j.cpet.2018.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Murphey MD, Robbin MR, McRae GA, Flemming DJ, Temple HT, Kransdorf MJ. The many faces of osteosarcoma. Radiographics. 1997;17:1205–31. https://doi.org/10.1148/radiographics.17.5.9308111.

    Article  CAS  PubMed  Google Scholar 

  62. Ilaslan H, Sundaram M, Unni KK, Shives TC. Primary vertebral osteosarcoma: imaging findings. Radiology. 2004;230:697–702. https://doi.org/10.1148/radiol.2303030226.

    Article  PubMed  Google Scholar 

  63. Yarmish G, Klein MJ, Landa J, Lefkowitz RA, Hwang S. Imaging characteristics of primary osteosarcoma: nonconventional subtypes. Radiographics. 2010;30:1653–72. https://doi.org/10.1148/rg.306105524.

    Article  PubMed  Google Scholar 

  64. Lee SY, Cho WH, Song WS, Park JH. Different radiological findings with the same pathologic diagnosis due to different age in primary osteosarcoma. Acta Radiol. 2006;47:841–4. https://doi.org/10.1080/02841850600812736.

    Article  CAS  PubMed  Google Scholar 

  65. Cannavò L, Albano D, Messina C, Corazza A, Rapisarda S, Pozzi G, et al. Accuracy of CT and MRI to assess resection margins in primary malignant bone tumours having histology as the reference standard. Clin Radiol. 2019;74(736):e13–21. https://doi.org/10.1016/j.crad.2019.05.022.

    Article  Google Scholar 

  66. Thompson MJ, Shapton JC, Punt SE, Johnson CN, Conrad EU 3rd. MRI identification of the osseous extent of pediatric bone sarcomas. Clin Orthop Relat Res. 2018;476:559–64. https://doi.org/10.1007/s11999.0000000000000068.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Orguc S, Arkun R. Primary tumors of the spine. Semin Musculoskelet Radiol. 2014;18:280–99. https://doi.org/10.1055/s-0034-1375570.

    Article  PubMed  Google Scholar 

  68. Liu F, Zhang Q, Zhou D, Dong J. Effectiveness of 18 F-FDG PET/CT in the diagnosis and staging of osteosarcoma: a meta-analysis of 26 studies. BMC Cancer. 2019;19:323. https://doi.org/10.1186/s12885-019-5488-5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lee I, Byun BH, Lim I, Kim BI, Kong CB, Song WS. Comparison of 99mTc-methyl diphosphonate bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography to predict histologic response to neoadjuvant chemotherapy in patients with osteosarcoma. Medicine (Baltimore). 2018;97:e12318. https://doi.org/10.1097/MD.0000000000012318.

    Article  PubMed  Google Scholar 

  70. Barker LM, Pendergrass TW, Sanders JE, Hawkins DS. Survival after recurrence of Ewing's sarcoma family of tumors. J Clin Oncol. 2005;23:4354–62. https://doi.org/10.1200/JCO.2005.05.105.

    Article  PubMed  Google Scholar 

  71. Coppola A, Albano D, Messina C, Biacca A, Pedone L, Rapisarda S, et al. Imaging of bone tumors of the spine: radiologic-pathologic correlation. G Ital Radiol Med. 2019;6:372–83. https://doi.org/10.23736/S2283-8376.19.00187-6.

    Article  Google Scholar 

  72. Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ. From the radiologic pathology archives: ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics. 2013;33:803–31. https://doi.org/10.1148/rg.333135005.

    Article  PubMed  Google Scholar 

  73. Mar WA, Taljanovic MS, Bagatell R, Graham AR, Speer DP, Hunter TB, et al. Update on imaging and treatment of ewing sarcoma family tumors: what the radiologist needs to know. J Comput Assist Tomogr. 2008;32:108–18. https://doi.org/10.1097/RCT.0b013e31805c030f.

    Article  PubMed  Google Scholar 

  74. Saranovic DPS, Nikitovic M, Saponjski J, Milojevic IG, Paripovic L, Saranovic D, et al. Post-treatment FDG PET/CT predicts progression-free survival in young patients with small round blue cell tumors: ewing sarcoma and PNET. Eur J Radiol. 2020;129:109076. https://doi.org/10.1016/j.ejrad.2020.109076.

    Article  PubMed  Google Scholar 

  75. Treglia G, Salsano M, Stefanelli A, Mattoli MV, Giordano A, Bonomo L. Diagnostic accuracy of 18F-FDG-PET and PET/CT in patients with ewing sarcoma family tumours: a systematic review and a meta-analysis. Skelet Radiol. 2012;41:249–56. https://doi.org/10.1007/s00256-011-1298-9.

    Article  Google Scholar 

  76. Farsad K, Kattapuram SV, Sacknoff R, Ono J, Nielsen GP. Sacral chordoma. Radiographics. 2009;29:1525–30. https://doi.org/10.1148/rg.295085215.

    Article  PubMed  Google Scholar 

  77. Sciubba DM, Chi JH, Rhines LD, Gokaslan ZL. Chordoma of the spinal column. Neurosurg Clin N Am. 2008;19:5–15. https://doi.org/10.1016/j.nec.2007.09.006.

    Article  PubMed  Google Scholar 

  78. Santos P, Peck KK, Arevalo-Perez J, Karimi S, Lis E, Yamada Y, et al. T1-weighted dynamic contrast-enhanced MR perfusion imaging characterizes tumor response to radiation therapy in chordoma. AJNR Am J Neuroradiol. 2017;38:2210–6. https://doi.org/10.3174/ajnr.A5383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rossleigh MA, Smith J, Yeh SD. Scintigraphic features of primary sacral tumors. J Nucl Med. 1986;27:627–30.

    CAS  PubMed  Google Scholar 

  80. Park SA, Kim HS. F-18 FDG PET/CT evaluation of sacrococcygeal chordoma. Clin Nucl Med. 2008;33:906–8. https://doi.org/10.1097/RLU.0b013e31818c4e88.

    Article  PubMed  Google Scholar 

  81. Lloret I, Server A, Bjerkehagen B. Primary spinal chondrosarcoma: radiologic findings with pathologic correlation. Acta Radiol. 2006;47:77–84. https://doi.org/10.1080/02841850500406852.

    Article  CAS  PubMed  Google Scholar 

  82. Murphey MD, Walker EA, Wilson AJ, Kransdorf MJ, Temple HT, Gannon FH. From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics. 2003;23:1245–78. https://doi.org/10.1148/rg.235035134.

    Article  PubMed  Google Scholar 

  83. Douis H, Jeys L, Grimer R, Vaiyapuri S, Davies AM. Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors? Skelet Radiol. 2015;44:963–9. https://doi.org/10.1007/s00256-015-2123-7.

    Article  CAS  Google Scholar 

  84. Annovazzi A, Anelli V, Zoccali C, Rumi N, Persichetti A, Novello M, et al. 18 F-FDG PET/CT in the evaluation of cartilaginous bone neoplasms: the added value of tumor grading. Ann Nucl Med. 2019;33:813–21. https://doi.org/10.1007/s12149-019-01392-3.

    Article  CAS  PubMed  Google Scholar 

  85. Lakkaraju A, Sinha R, Garikipati R, Edward S, Robinson P. Ultrasound for initial evaluation and triage of clinically suspicious soft-tissue masses. Clin Radiol. 2009;64:615–21. https://doi.org/10.1016/j.crad.2009.01.012.

    Article  CAS  PubMed  Google Scholar 

  86. Casali PG, Jost L, Sleijfer S, Verweij J, Blay JY, ESMO Guidelines Working Group. Soft tissue sarcomas: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20(Suppl 4):132–6. https://doi.org/10.1093/annonc/mdp153.

    Article  PubMed  Google Scholar 

  87. Sconfienza LM, Albano D, Allen G, Bazzocchi A, Bignotti B, Chianca V, et al. Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol. 2018;28:5338–51. https://doi.org/10.1007/s00330-018-5474-3.

    Article  PubMed  Google Scholar 

  88. Albano D, Aringhieri G, Messina C, De Flaviis L, Sconfienza LM. High-frequency and ultra-high frequency ultrasound: musculoskeletal imaging up to 70 MHz. Semin Musculoskelet Radiol. 2020;24:125–34. https://doi.org/10.1055/s-0039-3401042.

    Article  PubMed  Google Scholar 

  89. Chianca V, Di Pietto F, Zappia M, Albano D, Messina C, Sconfienza LM. Musculoskeletal ultrasound in the emergency department. Semin Musculoskelet Radiol. 2020;24:167–74. https://doi.org/10.1055/s-0039-3402050.

    Article  PubMed  Google Scholar 

  90. Pozza S, De Marchi A, Albertin C, Albano D, Biino G, Aloj D, et al. Technical and clinical feasibility of contrast-enhanced ultrasound evaluation of long bone non-infected nonunion healing. Radiol Med. 2018;123:703–9. https://doi.org/10.1007/s11547-018-0902-7.

    Article  PubMed  Google Scholar 

  91. Gitto S, Messina C, Chianca V, Tuscano B, Lazzara A, Corazza A, et al. Superb microvascular imaging (SMI) in the evaluation of musculoskeletal disorders: a systematic review. Radiol Med. 2020;125:481–90. https://doi.org/10.1007/s11547-020-01141-x.

    Article  PubMed  Google Scholar 

  92. Silvestri E, Barile A, Albano D, Messina C, Orlandi D, Corazza A, et al. Interventional therapeutic procedures in the musculoskeletal system: an Italian survey by the Italian College of Musculoskeletal Radiology. Radiol Med. 2018;123:314–21. https://doi.org/10.1007/s11547-017-0842-7.

    Article  PubMed  Google Scholar 

  93. Albano D, Chianca V, Tormenta S, Migliore A, Sconfienza LM. Old and new evidence concerning the crucial role of ultrasound in guiding intra-articular injections. Skelet Radiol. 2017;46:963–4. https://doi.org/10.1007/s00256-017-2644-3.

    Article  Google Scholar 

  94. Sconfienza LM, Chianca V, Messina C, Albano D, Pozzi G, Bazzocchi A. Upper limb interventions. Radiol Clin N Am. 2019;57:1073–82. https://doi.org/10.1016/j.rcl.2019.05.002.

    Article  PubMed  Google Scholar 

  95. Freire V, Guérini H, Campagna R, Moutounet L, Dumontier C, Feydy A, et al. Imaging of hand and wrist cysts: a clinical approach. AJR Am J Roentgenol. 2012;199:W618–28. https://doi.org/10.2214/AJR.11.8087.

    Article  PubMed  Google Scholar 

  96. Riishede I, Ewertsen C, Carlsen J, Petersen MM, Jensen F, Nielsen MB. Strain elastography for prediction of malignancy in soft tissue tumours—preliminary results. Ultraschall Med. 2015;36:369–74. https://doi.org/10.1055/s-0034-1399289.

    Article  CAS  PubMed  Google Scholar 

  97. Pass B, Johnson M, Hensor EMA, Gupta H, Robinson P. Sonoelastography of musculoskeletal soft tissue masses: a pilot study of quantitative evaluation. J Ultrasound Med. 2016;35:2209–16. https://doi.org/10.7863/ultra.15.11065.

    Article  PubMed  Google Scholar 

  98. Pass B, Jafari M, Rowbotham E, Hensor EMA, Gupta H, Robinson P. Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft tissue masses? Eur Radiol. 2017;27:723–31. https://doi.org/10.1007/s00330-016-4427-y.

    Article  CAS  PubMed  Google Scholar 

  99. Loizides A, Peer S, Plaikner M, Djurdjevic T, Gruber H. Perfusion pattern of musculoskeletal masses using contrast-enhanced ultrasound: a helpful tool for characterisation? Eur Radiol. 2012;22:1803–11. https://doi.org/10.1007/s00330-012-2407-4.

    Article  PubMed  Google Scholar 

  100. Coran A, Di Maggio A, Rastrelli M, Alberioli E, Attar S, Ortolan P, et al. Core needle biopsy of soft tissue tumors, CEUS vs US guided: a pilot study. J Ultrasound. 2015;18:335–42. https://doi.org/10.1007/s40477-015-0161-6.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Subhawong TK, Fishman EK, Swart JE, Carrino JA, Attar S, Fayad LM. Soft-tissue masses and mass-like conditions: what does CT add to diagnosis and management? AJR Am J Roentgenol. 2010;194:1559–67. https://doi.org/10.2214/AJR.09.3736.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Stewart VL, Herling P, Dalinka MK. Calcification in soft tissues. JAMA. 1983;250:78–81.

    Article  CAS  PubMed  Google Scholar 

  103. Kransdorf MJ, Jelinek JS, Moser RP Jr. Imaging of soft tissue tumors. Radiol Clin N Am. 1993;31:359–72.

    Article  CAS  PubMed  Google Scholar 

  104. Murphey MD, Fairbairn KJ, Parman LM, Baxter KG, Parsa MB, Smith WS. From the archives of the AFIP. Musculoskeletal angiomatous lesions: radiologic-pathologic correlation. RadioGraphics. 1995;15:893–917. https://doi.org/10.1148/radiographics.15.4.7569134.

    Article  CAS  PubMed  Google Scholar 

  105. Chan FP, Rubin GD. MDCT angiography of pediatric vascular diseases of the abdomen, pelvis, and extremities. Pediatr Radiol. 2005;35:40–53. https://doi.org/10.1007/s00247-004-1371-9.

    Article  PubMed  Google Scholar 

  106. Wu JS, Hochman MG. Soft-tissue tumors and tumorlike lesions: a systematic imaging approach. Radiology. 2009;253:297–316. https://doi.org/10.1148/radiol.2532081199.

    Article  PubMed  Google Scholar 

  107. Robba T, Chianca V, Albano D, Clementi V, Piana R, Linari A, et al. Diffusion-weighted imaging for the cellularity assessment and matrix characterization of soft tissue tumour. Radiol Med. 2017;122:871–9. https://doi.org/10.1007/s11547-017-0787-x.

    Article  PubMed  Google Scholar 

  108. Messina C, Bignone R, Bruno A, Bruno A, Bruno F, Calandri M, et al. Diffusion-weighted imaging in oncology: an update. Cancers (Basel). 2020;12:E1493. https://doi.org/10.3390/cancers12061493.

    Article  Google Scholar 

  109. Soler R, Castro JM, Rodríguez E. Value of MR findings in predicting the nature of the soft tissue lesions: benign, malignant or undetermined lesion? Comput Med Imaging Graph. 1996;20:163–9. https://doi.org/10.1016/0895-6111(96)00049-3.

    Article  CAS  PubMed  Google Scholar 

  110. Greenfield GB, Arrington JA, Kudryk BT. MRI of soft tissue tumors. Skelet Radiol. 1993;22:77–84. https://doi.org/10.1007/BF00197982.

    Article  CAS  Google Scholar 

  111. Lim HJ, Ong CAJ, Tan JWS, Teo MCC. Utility of positron emission tomography/computed tomography (PET/CT) imaging in the evaluation of sarcomas: a systematic review. Crit Rev Oncol Hematol. 2019;143:1–13. https://doi.org/10.1016/j.critrevonc.2019.07.002.

    Article  PubMed  Google Scholar 

  112. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:683–91. https://doi.org/10.1007/s00259-005-0044-8.

    Article  CAS  PubMed  Google Scholar 

  113. Fendler WP, Chalkidis RP, Ilhan H, Knösel T, Herrmann K, Issels RD, et al. Evaluation of several FDG PET parameters for prediction of soft tissue tumour grade at primary diagnosis and recurrence. Eur Radiol. 2015;25:2214–21. https://doi.org/10.1007/s00330-015-3654-y.

    Article  PubMed  Google Scholar 

  114. Herrmann K, Benz MR, Czernin J, Allen-Auerbach MS, Tap WD, Dry SM, et al. 18F-FDG-PET/CT imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin Cancer Res. 2012;18:2024–31. https://doi.org/10.1158/1078-0432.CCR-11-2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schwarzbach MHM, Hinz U, Dimitrakopoulou-Strauss A, Willeke F, Cardona S, Mechtersheime G, et al. Prognostic significance of preoperative [18-F] fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. Ann Surg. 2005;241:286–94. https://doi.org/10.1097/01.sla.0000152663.61348.6f.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Murphey MD, Carroll JF, Flemming DJ, Pope TL, Gannon FH, Kransdorf MJ. From the archives of the AFIP: benign musculoskeletal lipomatous lesions. Radiographics. 2004;24:1433–66. https://doi.org/10.1148/rg.245045120.

    Article  PubMed  Google Scholar 

  117. Inampudi P, Jacobson JA, Fessell DP, Carlos RC, Patel SV, Delaney-Sathy LO, et al. Soft-tissue lipomas: accuracy of sonography in diagnosis with pathologic correlation. Radiology. 2004;233:763–7. https://doi.org/10.1148/radiol.2333031410.

    Article  PubMed  Google Scholar 

  118. Rahmani G, McCarthy P, Bergin D. The diagnostic accuracy of ultrasonography for soft tissue lipomas: a systematic review. Acta Radiol Open. 2017;6:2058460117716704. https://doi.org/10.1177/2058460117716704.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hung EHY, Griffith JF, Hung Ng AW, Lee RKL, Lau DTY, Leung JCS. Ultrasound of musculoskeletal soft-tissue tumors superficial to the investing fascia. AJR Am J Roentgenol. 2014;202:W532–40. https://doi.org/10.2214/AJR.13.11457.

    Article  PubMed  Google Scholar 

  120. DiDomenico P, Middleton W. Sonographic evaluation of palpable superficial masses. Radiol Clin N Am. 2014;52:1295–305. https://doi.org/10.1016/j.rcl.2014.07.011.

    Article  PubMed  Google Scholar 

  121. Murphey MD, Arcara LK, Fanburg-Smith J. From the archives of the AFIP: imaging of musculoskeletal Liposarcoma with radiologic-pathologic correlation. Radiographics. 2005;25:1371–95. https://doi.org/10.1148/rg.255055106.

    Article  PubMed  Google Scholar 

  122. Arkun R, Memis A, Akalin T, Ustun EE, Sabah D, Kandiloglu G. Liposarcoma of soft tissue: MRI findings with pathologic correlation. Skelet Radiol. 1997;26:167–72. https://doi.org/10.1007/s002560050214.

    Article  CAS  Google Scholar 

  123. Yao K, Troupis JM. Diffusion-weighted imaging and the skeletal system: a literature review. Clin Radiol. 2016;71:1071–82. https://doi.org/10.1016/j.crad.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  124. Brenner W, Eary JF, Hwang W, et al. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging. 2006;33:1290–5. https://doi.org/10.1007/s00259-006-0170-y.

    Article  PubMed  Google Scholar 

  125. De Beuckeleer L, De Schepper A, De Belder F, Van Goethem J, Marques MC, Broeckx J, et al. Magnetic resonance imaging of localized giant cell tumour of the tendon sheath (MRI of localized GCTTS). Eur Radiol. 1997;7:198–201. https://doi.org/10.1007/s003300050134.

    Article  PubMed  Google Scholar 

  126. Murphey MD, Rhee JH, Lewis RB, Fanburg-Smith JC, Flemming DJ, Walker EA. Pigmented villonodular synovitis: radiologic-pathologic correlation. Radiographics. 2008;28:1493–518. https://doi.org/10.1148/rg.285085134.

    Article  PubMed  Google Scholar 

  127. Masih S, Antebi A. Imaging of pigmented villonodular synovitis. Semin Musculoskelet Radiol. 2003;7:205–16. https://doi.org/10.1055/s-2003-43231.

    Article  PubMed  Google Scholar 

  128. Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg. 1982;69:412–22. https://doi.org/10.1097/00006534-198203000-00002.

    Article  CAS  PubMed  Google Scholar 

  129. Enjolras O. Classification and management of the various superficial vascular anomalies: hemangiomas and vascular malformations. J Dermatol. 1997;24:701–10. https://doi.org/10.1111/j.1346-8138.1997.tb02522.x.

    Article  CAS  PubMed  Google Scholar 

  130. Navarro OM, Laffan EE, Ngan BY. Pediatric soft-tissue tumors and pseudo-tumors: MR imaging features with pathologic correlation: part 1. Imaging approach, pseudotumors, vascular lesions, and adipocytic tumors. Radiographics. 2009;29:887–906. https://doi.org/10.1148/rg.293085168.

    Article  PubMed  Google Scholar 

  131. Paltiel HJ, Burrows PE, Kozakewich HP, Zurakowski D, Mulliken JB. Soft-tissue vascular anomalies: utility of US for diagnosis. Radiology. 2000;214:747–54. https://doi.org/10.1148/radiology.214.3.r00mr21747.

    Article  CAS  PubMed  Google Scholar 

  132. Flors L, Leiva-Salinas C, Maged IM, Norton PT, Matsumoto AH, Angle JF, et al. MR imaging of soft-tissue vascular malformations: diagnosis, classification, and therapy follow-up. Radiographics. 2011;31:1321–40. https://doi.org/10.1148/rg.315105213.

    Article  PubMed  Google Scholar 

  133. Trop I, Dubois J, Guibaud L, Grignon A, Patriquin H, McCuaig C, et al. Soft-tissue venous malformations in pediatric and young adult patients: diagnosis with doppler US. Radiology. 1999;212:841–5. https://doi.org/10.1148/radiology.212.3.r99au11841.

    Article  CAS  PubMed  Google Scholar 

  134. MacCollin M, Chiocca EA, Evans DG, Friedman JM, Horvitz R, Jaramillo D, et al. Diagnostic criteria for schwannomatosis. Neurology. 2005;64:1838–45. https://doi.org/10.1212/01.WNL.0000163982.78900.AD.

    Article  CAS  PubMed  Google Scholar 

  135. Ryu JA, Lee SH, Cha EY, Kim TY, Kim SM, Shin MJ. Sonographic differentiation between schwannomas and neurofibromas in the musculoskeletal system. J Ultrasound Med. 2015;34:2253–60. https://doi.org/10.7863/ultra.15.01067.

    Article  PubMed  Google Scholar 

  136. Ahlawat S, Fayad LM. Imaging cellularity in benign and malignant peripheral nerve sheath tumors: utility of the “target sign” by diffusion weighted imaging. Eur J Radiol. 2018;102:195–201. https://doi.org/10.1016/j.ejrad.2018.03.018.

    Article  PubMed  Google Scholar 

  137. Abreu E, Aubert S, Wavreille G, Gheno R, Canella C, Cotton A. Peripheral tumor and tumor-like neurogenic lesions. Eur J Radiol. 2013;82:38–50. https://doi.org/10.1016/j.ejrad.2011.04.036.

    Article  PubMed  Google Scholar 

  138. Wasa J, Nishida Y, Tsukushi S, Shido Y, Sugiura H, Nakashima H, et al. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol. 2010;194:1568–74. https://doi.org/10.2214/AJR.09.2724.

    Article  PubMed  Google Scholar 

  139. Broski SM, Johnson GB, Howe BM, Nathan MA, Wenger DE, Spinner RJ, et al. Evaluation of (18)F-FDG PET and MRI in differentiating benign and malignant peripheral nerve sheath tumors. Skelet Radiol. 2016;45:1097–105. https://doi.org/10.1007/s00256-016-2394-7.

    Article  Google Scholar 

  140. Tsai LL, Drubach L, Fahey F, Irons M, Voss S, Ullrich NJ. [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neuro-Oncol. 2012;108:469–75. https://doi.org/10.1007/s11060-012-0840-5.

    Article  CAS  Google Scholar 

  141. Chang CY, Simeone FJ, Huang AJ. Battery-powered bone drill: caution needed in densely blastic lesions. Skelet Radiol. 2015;44:1845–8. https://doi.org/10.1007/s00256-015-2241-2.

    Article  Google Scholar 

  142. Gangi A, Tsoumakidou G, Buy X, Quoix E. Quality improvement guidelines for bone tumour management. Cardiovasc Intervent Radiol. 2010;33(4):706–13. https://doi.org/10.1007/s00270-009-9738-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cazzato RL, Arrigoni F, Boatta E, Bruno F, Chiang JB, Garnon J, et al. Percutaneous management of bone metastases: state of the art, interventional strategies and joint position statement of the Italian college of MSK radiology (ICoMSKR) and the Italian College of Interventional Radiology (ICIR). Radiol Med. 2019;124:34–49. https://doi.org/10.1007/s11547-018-0938-8.

    Article  PubMed  Google Scholar 

  144. Tsoumakidou G, Thénint MA, Garnon J, Buy X, Steib JP, Gangi A. Percutaneous image-guided laser photocoagulation of spinal osteoid osteoma: a single-institution series. Radiology. 2016;278:936–43. https://doi.org/10.1148/radiol.2015150491.

    Article  PubMed  Google Scholar 

  145. Cazzato RL, Auloge P, De Marini P, Rousseau C, Chiang JB, Koch G, et al. Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients. Int J Hyperth. 2018;35:493–9. https://doi.org/10.1080/02656736.2018.1508760.

    Article  Google Scholar 

  146. Gennaro N, Sconfienza LM, Ambrogi F, Boveri S, Lanza E. Thermal ablation to relieve pain from metastatic bone disease: a systematic review. Skelet Radiol. 2019;48:1161–9. https://doi.org/10.1007/s00256-018-3140-0.

    Article  Google Scholar 

  147. Mayer T, Cazzato RL, De Marini P, Auloge P, Dalili D, Koch G, Garnon J, et al. Spinal metastases treated with bipolar radiofrequency ablation with increased (>70°C) target temperature: pain management and local tumor control. Diagn Interv Imaging. 2020;S2211-5684(20):30123–6. https://doi.org/10.1016/j.diii.2020.04.012.

    Article  Google Scholar 

  148. Cazzato RL, Palussière J, Auloge P, Rousseau C, Koch G, Dalili D, et al. Complications following percutaneous image-guided radiofrequency ablation of bone tumors: a 10-year dual-center experience. Radiology. 2020;296:227–35. https://doi.org/10.1148/radiol.2020191905.

    Article  PubMed  Google Scholar 

  149. Auloge P, Cazzato RL, Rousseau C, Caudrelier J, Koch G, Rao P, Chiang JB, et al. Complications of percutaneous bone tumor cryoablation: a 10-year experience. Radiology. 2019;291:521–8. https://doi.org/10.1148/radiol.2019181262.

    Article  PubMed  Google Scholar 

  150. Tsoumakidou G, Buy X, Garnon J, Enescu J, Gangi A. Percutaneous thermal ablation: how to protect the surrounding organs. Tech Vasc Interv Radiol. 2011;14:170–6. https://doi.org/10.1053/j.tvir.2011.02.009.

    Article  PubMed  Google Scholar 

  151. Cazzato RL, Koch G, Buy X, Ramamurthy N, Tsoumakidou G, Caudrelier J, et al. Percutaneous image-guided screw fixation of bone lesions in cancer patients: double-centre analysis of outcomes including local evolution of the treated focus. Cardiovasc Intervent Radiol. 2016;39:1455–63. https://doi.org/10.1007/s00270-016-1389-z.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albano, D., Cazzato, R.L., Sconfienza, L.M. (2023). Bone and Soft Tissues. In: Neri, E., Erba, P.A. (eds) Multimodality Imaging and Intervention in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-28524-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28524-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28523-3

  • Online ISBN: 978-3-031-28524-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics