Skip to main content

Advertisement

Log in

Superb microvascular imaging (SMI) in the evaluation of musculoskeletal disorders: a systematic review

  • MUSCULOSKELETAL RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Objectives

To systematically review the current literature concerning the role of superb microvascular imaging (SMI), a novel Doppler technique that enables detection of fine vessels and slow blood flow, in the evaluation of musculoskeletal disorders.

Methods

An online search of the literature was conducted for the period 2013 to April 2019 and included original articles written in English language. A data analysis was performed at the end of the literature search.

Results

Eight original articles with prospective design and one with retrospective design were included in this review: 4 studies focused on rheumatoid arthritis, 2 on rheumatoid and other arthritides, 1 on lateral epicondylosis and 2 on carpal tunnel syndrome. Sample size ranged from 26 to 83 patients. Despite some methodological differences, all studies compared the performance of SMI with that of a conventional Doppler technique such as power and color Doppler and found an improvement in vascularity detection with SMI. The main variations were in sample size, evaluated parameters and vascularity interpretation methods. Inter-observer agreement for SMI ranged from moderate to excellent.

Conclusions

SMI is a promising tool for the diagnosis and treatment planning of different musculoskeletal disorders. Future investigations should include larger samples of patients with long-term follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sconfienza LM, Adriaensen M, Albano D et al (2019) Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part I, shoulder. Eur Radiol. https://doi.org/10.1007/s00330-019-06419-x

    Article  PubMed  Google Scholar 

  2. Sconfienza LM, Adriaensen M, Albano D et al (2019) Clinical indications for image guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part II, elbow and wrist. Eur Radiol. https://doi.org/10.1007/s00330-019-06545-6

    Article  PubMed  Google Scholar 

  3. Sconfienza LM, Adriaensen M, Albano D et al (2019) Clinical indications for image guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part III, nerves of the upper limb. Eur Radiol. https://doi.org/10.1007/s00330-019-06479-z

    Article  PubMed  Google Scholar 

  4. Corvino A, Cangiano G, Corvino F et al (2018) Prevalence and significance of ultrasound, color- and spectral-Doppler findings in the diagnosis of iatrogenic pseudoaneurysms. G Ital Radiol Med 5:30–35. https://doi.org/10.23736/S2283-8376.17.00002-X

    Article  Google Scholar 

  5. Russo G, Balocco P, Pozza S et al (2018) The role of contrast-enhanced ultrasound in ultrasound-guided biopsy of soft tissue tumors. G Ital Radiol Med 5:185–189. https://doi.org/10.23736/S2283-8376.18.00055-4

    Article  Google Scholar 

  6. Silvestri E, Barile A, Albano D et al (2018) Interventional therapeutic procedures in the musculoskeletal system: an Italian Survey by the Italian College of Musculoskeletal Radiology. Radiol Med 123:314–321. https://doi.org/10.1007/s11547-017-0842-7

    Article  PubMed  Google Scholar 

  7. Sconfienza LM, Albano D, Allen G et al (2018) Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol 28:5338–5351. https://doi.org/10.1007/s00330-018-5474-3

    Article  PubMed  Google Scholar 

  8. Möller I, Janta I, Backhaus M et al (2017) The 2017 EULAR standardised procedures for ultrasound imaging in rheumatology. Ann Rheum Dis 76:1974–1979. https://doi.org/10.1136/annrheumdis-2017-211585

    Article  PubMed  Google Scholar 

  9. Boote EJ (2003) AAPM/RSNA physics tutorial for residents: topics in US. Radiographics 23:1315–1327. https://doi.org/10.1148/rg.235035080

    Article  PubMed  Google Scholar 

  10. Pozza S, De Marchi A, Albertin C et al (2018) Technical and clinical feasibility of contrast-enhanced ultrasound evaluation of long bone non-infected nonunion healing. Radiol Med 123:703–709. https://doi.org/10.1007/s11547-018-0902-7

    Article  PubMed  Google Scholar 

  11. Hata J (2014) Medical review seeing the unseen new techniques in vascular imaging. Toshiba Medical Systems Corporation. https://pdfs.semanticscholar.org/cd4b/b692fc285cc65791de0034c0229fc3411daa.pdf. Accessed 30 Jan 2020

  12. Ma Y, Li G, Li J, Ren W (2015) The diagnostic value of superb microvascular imaging (SMI) in detecting blood flow signals of breast lesions. Med (Baltim) 94:e1502. https://doi.org/10.1097/MD.0000000000001502

    Article  Google Scholar 

  13. Yongfeng Z, Ping Z, Wengang L et al (2016) Application of a novel microvascular imaging technique in breast lesion evaluation. Ultrasound Med Biol 42:2097–2105. https://doi.org/10.1016/j.ultrasmedbio.2016.05.010

    Article  PubMed  Google Scholar 

  14. Zhan J, Diao X-H, Jin J-M et al (2016) Superb microvascular imaging—a new vascular detecting ultrasonographic technique for avascular breast masses: a preliminary study. Eur J Radiol 85:915–921. https://doi.org/10.1016/j.ejrad.2015.12.011

    Article  PubMed  Google Scholar 

  15. Lee YS, Kim M-J, Han SW et al (2016) Superb microvascular imaging for the detection of parenchymal perfusion in normal and undescended testes in young children. Eur J Radiol 85:649–656. https://doi.org/10.1016/j.ejrad.2015.12.023

    Article  PubMed  Google Scholar 

  16. Machado P, Segal S, Lyshchik A, Forsberg F (2016) A novel microvascular flow technique: initial results in thyroid. Ultrasound Q 32:67–74. https://doi.org/10.1097/RUQ.0000000000000156

    Article  PubMed  Google Scholar 

  17. Lim AKP (2014) The clinical utility of SMI for assessing musculoskeletal inflammation : case study reports. Toshiba Medical Systems Corporation. https://medical.toshiba.com/download/aplio-500-cs-smi-musculoskeletal-inflammation%0D. Accessed 4 Dec 2019

  18. Artul S, Nseir W, Armaly Z, Soudack M (2017) Superb microvascular imaging: added value and novel applications. J Clin Imaging Sci 7:45. https://doi.org/10.4103/jcis.JCIS_79_17

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang Z, Huang Y, Shen H, Liu X (2019) Clinical applications of superb microvascular imaging in the liver, breast, thyroid, skeletal muscle, and carotid plaques. J Ultrasound Med 38:2811–2820. https://doi.org/10.1002/jum.15008

    Article  PubMed  Google Scholar 

  20. Arslan S, Karahan AY, Oncu F et al (2018) Diagnostic performance of superb microvascular imaging and other sonographic modalities in the assessment of lateral epicondylosis. J Ultrasound Med 37:585–593. https://doi.org/10.1002/jum.14369

    Article  PubMed  Google Scholar 

  21. Chen J, Chen L, Wu L et al (2017) Value of superb microvascular imaging ultrasonography in the diagnosis of carpal tunnel syndrome. Med (Baltim) 96:e6862. https://doi.org/10.1097/MD.0000000000006862

    Article  Google Scholar 

  22. Karahan AY, Arslan S, Ordahan B et al (2018) Superb microvascular imaging of the median nerve in carpal tunnel syndrome: an electrodiagnostic and ultrasonographic study. J Ultrasound Med 37:2855–2861. https://doi.org/10.1002/jum.14645

    Article  PubMed  Google Scholar 

  23. Lee GY, Kim S, Choi ST, Song JS (2019) The superb microvascular imaging is more sensitive than conventional power Doppler imaging in detection of active synovitis in patients with rheumatoid arthritis. Clin Rheumatol 38:2613–2620. https://doi.org/10.1007/s10067-019-04550-0

    Article  PubMed  Google Scholar 

  24. Lim AKP, Satchithananda K, Dick EA et al (2018) Microflow imaging: New Doppler technology to detect low-grade inflammation in patients with arthritis. Eur Radiol 28:1046–1053. https://doi.org/10.1007/s00330-017-5016-4

    Article  CAS  PubMed  Google Scholar 

  25. Orlandi D, Gitto S, Perugin Bernardi S et al (2017) Advanced power Doppler technique increases synovial vascularity detection in patients with rheumatoid arthritis. Ultrasound Med Biol 43:1880–1887. https://doi.org/10.1016/j.ultrasmedbio.2017.05.004

    Article  PubMed  Google Scholar 

  26. Yokota K, Tsuzuki Wada T, Akiyama Y, Mimura T (2018) Detection of synovial inflammation in rheumatic diseases using superb microvascular imaging: comparison with conventional power Doppler imaging. Mod Rheumatol 28:327–333. https://doi.org/10.1080/14397595.2017.1337288

    Article  PubMed  Google Scholar 

  27. Yu X, Li Z, Ren M et al (2018) Superb microvascular imaging (SMI) for evaluating hand joint lesions in patients with rheumatoid arthritis in clinical remission. Rheumatol Int 38:1885–1890. https://doi.org/10.1007/s00296-018-4112-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li W, Liu F, Zhu J et al (2016) Superb micro-vascular imaging improving inflammatory flow blood sensitivity in patients with rheumatoid arthritis. Int J Clin Exp Med 9:19930–19934

    Google Scholar 

  29. Sconfienza LM, Silvestri E, Cimmino MA (2012) High-resolution ultrasound evaluation of extrinsic wrist ligaments in patients affected by rheumatoid arthritis. Eur Radiol 22:1586–1591. https://doi.org/10.1007/s00330-012-2402-9

    Article  PubMed  Google Scholar 

  30. Walsh D (1999) Angiogenesis and arthritis. Rheumatol (Oxf) 38:103–112. https://doi.org/10.1093/rheumatology/38.2.103

    Article  CAS  Google Scholar 

  31. Bhasin S, Cheung PP (2015) The role of power Doppler ultrasonography as disease activity marker in rheumatoid arthritis. Dis Markers 2015:1–9. https://doi.org/10.1155/2015/325909

    Article  Google Scholar 

  32. Fukae J, Tanimura K, Atsumi T, Koike T (2014) Sonographic synovial vascularity of synovitis in rheumatoid arthritis. Rheumatol (Oxf) 53:586–591. https://doi.org/10.1093/rheumatology/ket311

    Article  Google Scholar 

  33. Toprak H, Kilic E, Serter A et al (2013) Doppler US in rheumatic diseases with special emphasis on rheumatoid arthritis and spondyloarthritis. Diagn Interv Radiol. https://doi.org/10.5152/dir.2013.13127

    Article  PubMed Central  Google Scholar 

  34. Nakagomi D, Ikeda K, Okubo A et al (2013) Ultrasound can improve the accuracy of the 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis to predict the requirement for methotrexate treatment. Arthritis Rheum 65:890–898. https://doi.org/10.1002/art.37848

    Article  CAS  PubMed  Google Scholar 

  35. Naredo E, Valor L, De la Torre I et al (2015) Predictive value of Doppler ultrasound-detected synovitis in relation to failed tapering of biologic therapy in patients with rheumatoid arthritis. Rheumatol (Oxf) 54:1408–1414. https://doi.org/10.1093/rheumatology/kev006

    Article  Google Scholar 

  36. Szkudlarek M, Court-Payen M, Jacobsen S et al (2003) Interobserver agreement in ultrasonography of the finger and toe joints in rheumatoid arthritis. Arthritis Rheum 48:955–962. https://doi.org/10.1002/art.10877

    Article  PubMed  Google Scholar 

  37. Baeten D (2000) Comparative study of the synovial histology in rheumatoid arthritis, spondyloarthropathy, and osteoarthritis: influence of disease duration and activity. Ann Rheum Dis 59:945–953. https://doi.org/10.1136/ard.59.12.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown AK, Conaghan PG, Karim Z et al (2008) An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum 58:2958–2967. https://doi.org/10.1002/art.23945

    Article  CAS  PubMed  Google Scholar 

  39. Naredo E, Collado P, Cruz A et al (2007) Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Rheum 57:116–124. https://doi.org/10.1002/art.22461

    Article  PubMed  Google Scholar 

  40. Scire CA, Montecucco C, Codullo V et al (2009) Ultrasonographic evaluation of joint involvement in early rheumatoid arthritis in clinical remission: power Doppler signal predicts short-term relapse. Rheumatol (Oxf) 48:1092–1097. https://doi.org/10.1093/rheumatology/kep171

    Article  CAS  Google Scholar 

  41. Koski JM, Saarakkala S, Helle M et al (2006) Power Doppler ultrasonography and synovitis: correlating ultrasound imaging with histopathological findings and evaluating the performance of ultrasound equipments. Ann Rheum Dis 65:1590–1595. https://doi.org/10.1136/ard.2005.051235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Porta F, Radunovic G, Vlad V et al (2012) The role of Doppler ultrasound in rheumatic diseases. Rheumatol (Oxf) 51:976–982. https://doi.org/10.1093/rheumatology/ker433

    Article  Google Scholar 

  43. Albano D, Messina C, Usuelli FG et al (2017) Magnetic resonance and ultrasound in achilles tendinopathy: predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection. Eur J Radiol 95:130–135. https://doi.org/10.1016/j.ejrad.2017.08.006

    Article  PubMed  Google Scholar 

  44. Usuelli FG, Grassi M, Maccario C et al (2018) Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg Sports Traumatol Arthrosc 26:2000–2010. https://doi.org/10.1007/s00167-017-4479-9

    Article  PubMed  Google Scholar 

  45. Gitto S, Draghi AG, Bortolotto C, Draghi F (2016) Sonography of the Achilles tendon after complete rupture repair. J Ultrasound Med 35:2529–2536. https://doi.org/10.7863/ultra.16.01092

    Article  PubMed  Google Scholar 

  46. Wilson JJ, Best TM (2005) Common overuse tendon problems: a review and recommendations for treatment. Am Fam Physician 72:811–818

    PubMed  Google Scholar 

  47. Zappia M, Aliprandi A, Pozza S et al (2016) How is shoulder ultrasound done in Italy? A survey of clinical practice. Skelet Radiol 45:1629–1634. https://doi.org/10.1007/s00256-016-2477-5

    Article  Google Scholar 

  48. Alfredson H, Ohberg L, Forsgren S (2003) Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis? Knee Surg Sports Traumatol Arthrosc 11:334–338. https://doi.org/10.1007/s00167-003-0391-6

    Article  PubMed  Google Scholar 

  49. du Toit C, Stieler M, Saunders R et al (2008) Diagnostic accuracy of power Doppler ultrasound in patients with chronic tennis elbow. Br J Sports Med 42:572–576. https://doi.org/10.1136/bjsm.2007.043901

    Article  Google Scholar 

  50. Connell D, Burke F, Coombes P et al (2001) Sonographic examination of lateral epicondylitis. AJR Am J Roentgenol 176:777–782. https://doi.org/10.2214/ajr.176.3.1760777

    Article  CAS  PubMed  Google Scholar 

  51. Zanetti M, Metzdorf A, Kundert H-P et al (2003) Achilles tendons: clinical relevance of neovascularization diagnosed with power Doppler US. Radiology 227:556–560. https://doi.org/10.1148/radiol.2272012069

    Article  PubMed  Google Scholar 

  52. Gitto S, Draghi F (2016) Normal sonographic anatomy of the wrist with emphasis on assessment of tendons, nerves, and ligaments. J Ultrasound Med 35:1081–1094. https://doi.org/10.7863/ultra.15.06105

    Article  PubMed  Google Scholar 

  53. Mawrin C, Schütz G, Schröder JM (2001) Correlation between the number of epineurial and endoneurial blood vessels in diseased human sural nerves. Acta Neuropathol 102:364–372. https://doi.org/10.1007/s004010100391

    Article  CAS  PubMed  Google Scholar 

  54. Gupta R, Gray M, Chao T et al (2005) Schwann cells upregulate vascular endothelial growth factor secondary to chronic nerve compression injury. Muscle Nerve 31:452–460. https://doi.org/10.1002/mus.20272

    Article  CAS  PubMed  Google Scholar 

  55. Akcar N, Özkan S, Mehmetoglu Ö et al (2010) Value of power Doppler and gray-scale US in the diagnosis of carpal tunnel syndrome: contribution of cross-sectional area just before the tunnel inlet as compared with the cross-sectional area at the tunnel. Korean J Radiol 11:632. https://doi.org/10.3348/kjr.2010.11.6.632

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chari B, McNally E (2018) Nerve entrapment in ankle and foot: ultrasound imaging. Semin Musculoskelet Radiol 22:354–363. https://doi.org/10.1055/s-0038-1648252

    Article  PubMed  Google Scholar 

  57. Klauser A, Buzzegoli T, Taljanovic M et al (2018) Nerve entrapment syndromes at the wrist and elbow by sonography. Semin Musculoskelet Radiol 22:344–353. https://doi.org/10.1055/s-0038-1641577

    Article  PubMed  Google Scholar 

  58. Petchprapa CN, Rosenberg ZS, Sconfienza LM et al (2010) MR imaging of entrapment neuropathies of the lower extremity. Radiographics 30:983–1000. https://doi.org/10.1148/rg.304095135

    Article  PubMed  Google Scholar 

  59. Dejaco C, Stradner M, Zauner D et al (2013) Ultrasound for diagnosis of carpal tunnel syndrome: comparison of different methods to determine median nerve volume and value of power Doppler sonography. Ann Rheum Dis 72:1934–1939. https://doi.org/10.1136/annrheumdis-2012-202328

    Article  PubMed  Google Scholar 

  60. Ghasemi-Esfe AR, Khalilzadeh O, Vaziri-Bozorg SM et al (2011) Color and power Doppler US for diagnosing carpal tunnel syndrome and determining its severity: a quantitative image processing method. Radiology 261:499–506. https://doi.org/10.1148/radiol.11110150

    Article  PubMed  Google Scholar 

  61. Ghasemi-Esfe AR, Khalilzadeh O, Mazloumi M et al (2011) Combination of high-resolution and color Doppler ultrasound in diagnosis of carpal tunnel syndrome. Acta Radiol 52:191–197. https://doi.org/10.1258/ar.2010.100299

    Article  PubMed  Google Scholar 

  62. Joy V, Therimadasamy AK, Chan YC, Wilder-Smith EP (2011) Combined Doppler and B-mode sonography in carpal tunnel syndrome. J Neurol Sci 308:16–20. https://doi.org/10.1016/j.jns.2011.06.042

    Article  PubMed  Google Scholar 

  63. Ooi CC, Wong SK, Tan ABH et al (2014) Diagnostic criteria of carpal tunnel syndrome using high-resolution ultrasonography: correlation with nerve conduction studies. Skelet Radiol 43:1387–1394. https://doi.org/10.1007/s00256-014-1929-z

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Messina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All performed procedures were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gitto, S., Messina, C., Chianca, V. et al. Superb microvascular imaging (SMI) in the evaluation of musculoskeletal disorders: a systematic review. Radiol med 125, 481–490 (2020). https://doi.org/10.1007/s11547-020-01141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01141-x

Keywords

Navigation