Skip to main content

Hydrogen Combustion in Gas Turbines

  • Chapter
  • First Online:
Hydrogen for Future Thermal Engines

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The development of gas turbines using 100% hydrogen as fuel is an important step towards the development of new energy and propulsion technologies using zero carbon fuels. This chapter reviews some elements of combustion science and engineering that can help with these developments. Stable and low-NO\(_{x}\) hydrogen combustors face significant challenges. Stabilisation of the flame at the right location without autoignition or flashback, with low NO\(_{x}\) production, and without any thermoacoustic oscillations is important to achieve. Some new combustor architectures addressing these requirements are reviewed. The importance of mixing history is emphasised and some novel tools that can be used for assessing the effects of mixing on NO\(_{x}\) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noble D, Wu D, Emerson B, Sheppard S, Lieuwen T, Angello L (2021) J Eng Gas Turbines Power 143. https://doi.org/10.1115/1.4049346

  2. Beita J, Talibi M, Sadasivuni S, Balachandran R (2021) Hydrogen 2:33. https://doi.org/10.3390/hydrogen2010003

    Article  CAS  Google Scholar 

  3. Conner M (2001) Hans von Ohain: elegance in flight. AIAA

    Google Scholar 

  4. Wikipedia. Tupolev Tu-155 (2022). https://en.wikipedia.org/wiki/Tupolev_Tu-155

  5. Lefebvre AH, Ballal DR (2010) Gas turbine combustion: alternative fuels and emissions, 3rd edn. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  6. Lawn C (2009) Progr Energy Combust Sci 35:1. https://doi.org/10.1016/j.pecs.2008.06.003

    Article  CAS  Google Scholar 

  7. Syred N (2006) Progr Energy Combust Sci 32:93. https://doi.org/10.1016/j.pecs.2005.10.002

    Article  CAS  Google Scholar 

  8. Gruber A, Chen JH, Valiev D, Law CK (2012) J Fluid Mech 709:516. https://doi.org/10.1017/jfm.2012.345

    Article  CAS  Google Scholar 

  9. Shanbhogue SJ, Husain S, Lieuwen T (2009) Progr Energy Combust Sci 35:98. https://doi.org/10.1016/j.pecs.2008.07.003

    Article  CAS  Google Scholar 

  10. Kariuki J, Dawson JR, Mastorakos E (2012) Combust Flame 159:2589. https://doi.org/10.1016/j.combustflame.2012.01.005

    Article  CAS  Google Scholar 

  11. Pathania RS, Skiba AW, Sidey-Gibbons JAM, Mastorakos E (2021) J Propuls Power 37:479. https://doi.org/10.2514/1.B38133

    Article  CAS  Google Scholar 

  12. Pathania RS, Skiba AW, Mastorakos E (2021) Combust Flame 227:428. https://doi.org/10.1016/j.combustflame.2021.01.021

    Article  CAS  Google Scholar 

  13. Wiseman S, Rieth M, Gruber A, Dawson JR, Chen JH (2021) Proc Combust Inst 38:2869. https://doi.org/10.1016/j.proci.2020.07.011

    Article  CAS  Google Scholar 

  14. Reichel TG, Terhaar S, Paschereit CO (2018) J Propuls Power 34:690. https://doi.org/10.2514/1.B36646

    Article  CAS  Google Scholar 

  15. Magnusson R, Andersson M (2020) ASME turbo expo: power for land, sea, and air: oil and gas applications; organic Rankine cycle power systems; steam turbine, vol 9, p V009T21A019. https://doi.org/10.1115/GT2020-16332

  16. Marragou S, Magnes H, Aniello A, Selle L, Poinsot T, Schuller T (2022) Proceedings of the Combustion Institute 39. Appear. https://doi.org/10.1016/j.fuel.2019.05.107

    Article  Google Scholar 

  17. Funke HHW, Beckmann N, Keinz J, Horikawa A (2021) J Eng Gas Turbines Power 143:071002. https://doi.org/10.1115/1.4049764

    Article  CAS  Google Scholar 

  18. Mira D, Lehmkuhl O, Both A, Stathopoulos P, Tanneberger T, Reichel T, Paschereit C, Vazquez M, Houzeaux G (2020) Flow Turbul Combust 104:479. https://doi.org/10.1007/s10494-019-00106-z

    Article  CAS  Google Scholar 

  19. Chiesa P, Lozza G, Mazzocchi L (2005) J Eng Gas Turbines Power 127:73. https://doi.org/10.1115/1.1787513

    Article  CAS  Google Scholar 

  20. Banihabib R, Assadi M (2022) Sustainability 14. https://doi.org/10.3390/su142013305. https://www.mdpi.com/2071-1050/14/20/13305

  21. Candel S (2002) Proc Combust Inst 29:1. https://doi.org/10.1016/S1540-7489(02)80007-4

    Article  CAS  Google Scholar 

  22. Lieuwen T, Yang V (2005) Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling. Progress in Astronautics and Aeronautics

    Google Scholar 

  23. Huang Y, Yang V (2009) Progr Energy Combust Sci 35:293. https://doi.org/10.1016/j.pecs.2009.01.002

    Article  CAS  Google Scholar 

  24. Gong C, Jangi M, Bai XS, Liang JH, Sun MB (2017) Int J Hydrog Energy 42:1264. https://doi.org/10.1016/j.ijhydene.2016.09.017

    Article  CAS  Google Scholar 

  25. Balachandran R, Ayoola B, Kaminski C, Dowling A, Mastorakos E (2005) Combust Flame 143:37. https://doi.org/10.1016/j.combustflame.2005.04.009

    Article  CAS  Google Scholar 

  26. Ezenwajiaku C, Balachandran R, Picciani M, Ducci A, Talibi M (2023) Experimental characterisation of the dynamics of partially premixed hydrogen flames in a lean direct injection (LDI) combustor. Accepted for: ASME Turbo Expo (2023) Boston. Massachusetts, USA

    Google Scholar 

  27. Shanbhogue S, Sanusi Y, Taamallah S, Habib M, Mokheimer E, Ghoniem A (2016) Combust Flame 163:494. https://doi.org/10.1016/j.combustflame.2015.10.026

    Article  CAS  Google Scholar 

  28. Karlis E, Liu Y, Hardalupas Y, Taylor AM (2019) Fuel 254:115524. https://doi.org/10.1016/j.fuel.2019.05.107

    Article  CAS  Google Scholar 

  29. Taamallah S, LaBry ZA, Shanbhogue SJ, Ghoniem AF (2015) Proc Combust Inst 35:3273

    Article  CAS  Google Scholar 

  30. Beita J, Talibi M, Rocha N, Ezenwajiaku C, Sadasivuni S, Balachandran R (2022) Presented at: IOP Hydrogen Combustion – Current Research meeting, Rolls-Royce, Derby, UK

    Google Scholar 

  31. Aspden AJ, Day MS, Bell JB (2011) J Fluid Mech 680:287. https://doi.org/10.1017/jfm.2011.164

    Article  CAS  Google Scholar 

  32. Ezenwajiaku C, Talibi M, Picciani M, Ducci A, Balachandran R (2023) Presented at: Twelfth Mediterranean Combustion Symposium. Luxor, Egypt

    Google Scholar 

  33. Durocher A, Meulemans M, Versailles P, Bourque G, Bergthorson JM (2021) Proc Combust Inst 38:2093. https://doi.org/10.1016/j.proci.2020.06.124

    Article  CAS  Google Scholar 

  34. Glarborg P, Miller JA, Ruscic B, Klippenstein SJ (2018) Progr Energy Combust Sci 67:31. https://doi.org/10.1016/j.pecs.2018.01.002

    Article  Google Scholar 

  35. Cocchi S, Sigali S (2010) Development of a low-NOX hydrogen-fuelled combustor for 10 MW Class Gas Turbines. Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Glasgow, UK. June 14–18, 2010. pp. 1025–1035. ASME. https://doi.org/10.1115/GT2010-23348

  36. Stathopoulos P, Kuhn P, Wendler J, Tanneberger T, Terhaar S, Paschereit CO, Schmalhofer C, Griebel P, Aigner M (2016) J Eng Gas Turbines Power 139:041507. https://doi.org/10.1115/1.4034687

    Article  CAS  Google Scholar 

  37. Gkantonas S, de Oliveira PM, Pathania R, Foale JM, Mastorakos E (2022) Kinetic calculations of ammonia—Hydrogen combustion. Tech. rep., Department of Engineering. University of Cambridge. https://www.ati.org.uk/flyzero-reports/ Deliverable FZ_CE_0204 for the Aerospace Technology Institute’s FlyZero project (Combustion Analysis, FZ_SOW_0002)

  38. Gkantonas S, Mastorakos E (2023). J Propulsion Power (in press). https://doi.org/10.2514/1.B39142

    Article  Google Scholar 

  39. Goodwin DG, Moffat HK, Schoegl I, Speth RL, Weber BW (2022) Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org. https://doi.org/10.5281/zenodo.6387882. Version 2.6.0

  40. Wang H, Xu R, Wang K, Bowman CT, Hanson RK, Davidson DF, Brezinsky K, Egolfopoulos FN (2018) Combust Flame 193:502. https://doi.org/10.1016/j.combustflame.2018.03.019

    Article  Google Scholar 

  41. Xu R, Wang K, Banerjee S, Shao J, Parise T, Zhu Y, Wang S, Movaghar A, Lee DJ, Zhao R, Han X, Gao Y, Lu T, Brezinsky K, Egolfopoulos FN, Davidson DF, Hanson RK, Bowman CT, Wang H (2018) Combust Flame 193:520. https://doi.org/10.1016/j.combustflame.2018.03.021

    Article  CAS  Google Scholar 

  42. Saggese C, Wan K, Xu R, Tao Y, Bowman CT, Park JW, Lu T, Wang H (2020) Combust Flame 212:270. https://doi.org/10.1016/j.combustflame.2019.10.038

    Article  CAS  Google Scholar 

  43. Metcalfe WK, Burke SM, Ahmed SS, Curran HJ (2013) Int J Chem Kinet 45:638. https://doi.org/10.1002/kin.20802

    Article  CAS  Google Scholar 

  44. Song Y, Marrodán L, Vin N, Herbinet O, Assaf E, Fittschen C, Stagni A, Faravelli T, Alzueta M, Battin-Leclerc F (2019) Proc Combust Inst 37:667. https://doi.org/10.1016/j.proci.2018.06.115

    Article  CAS  Google Scholar 

  45. Meulemans M, Durocher A, Versailles P, Bourque G, Bergthorson JM (2022) Proc Combust Inst 39. https://doi.org/10.1016/j.proci.2022.07.189

  46. Bilger R (1976) Combust Sci Technol 13:155. https://doi.org/10.1080/00102207608946733

    Article  Google Scholar 

  47. Poinsot T, Veynante D (2005) Theoretical and numerical combustion, 2nd edn. RT Edwards, Inc.

    Google Scholar 

  48. Klimenko A, Bilger R (1999) Progr Energy Combust Sci 25:595. https://doi.org/10.1016/S0360-1285(99)00006-4

    Article  CAS  Google Scholar 

  49. Smith NSA (1994) Development of the conditional moment closure method for modelling turbulent combustion. Ph.D. thesis. University of Sydney

    Google Scholar 

  50. Mobini K, Bilger R (2004) Combust Sci Technol 176:45. https://doi.org/10.1080/00102200490255334

    Article  CAS  Google Scholar 

  51. Mobini K, Bilger R (2009) Combust Flame 156:1818. https://doi.org/10.1016/j.combustflame.2009.06.017

    Article  CAS  Google Scholar 

  52. Iavarone S, Gkantonas S, Jella S, Versailles P, Yousefian S, Monaghan RFD, Mastorakos E, Bourque G (2022) J Eng Gas Turbines Power 144:121006. https://doi.org/10.1115/1.4055481

    Article  Google Scholar 

  53. Giusti A, Mastorakos E (2019) Flow, turbulence and combustion 103:847. https://doi.org/10.1007/s10494-019-00072-6

  54. Bilger W, Dibble RW (1982) Combust Sci Technol 28:161. https://doi.org/10.1080/00102208208952552

    Article  CAS  Google Scholar 

  55. Pope SB (1998) J Fluid Mech 359:299. https://doi.org/10.1017/S0022112097008380

    Article  CAS  Google Scholar 

  56. Nilsen V, Kosály G (1999) Combust Flame 117:493. https://doi.org/10.1016/S0010-2180(98)00113-8

    Article  CAS  Google Scholar 

  57. Drake M, Lapp M, Penney C, Warshaw S, Gerhold B (1981) Sympos (Int) Combust 18:1521. https://doi.org/10.1016/s0082-0784(81)80154-3

  58. Smith LL, Dibble RW, Talbot L, Barlow RS, Carter CD (1995) Phys Fluids 7:1455. https://doi.org/10.1063/1.868532

    Article  CAS  Google Scholar 

  59. Frederick D, Chen JY (2014) Flow Turbul Combust 93:283. https://doi.org/10.1007/s10494-014-9547-3

    Article  CAS  Google Scholar 

  60. Lignell DO, Hewson JC, Chen JH (2009) Proc Combust Inst 32:1491. https://doi.org/10.1016/j.proci.2008.07.007

    Article  CAS  Google Scholar 

  61. Garmory A, Mastorakos E (2015) Proc Combust Inst 35:1207. https://doi.org/10.1016/j.proci.2014.05.032

    Article  CAS  Google Scholar 

  62. Pitsch H, Peters N (1998) Combust Flame 114:26. https://doi.org/10.1016/S0010-2180(97)00278-2

    Article  CAS  Google Scholar 

  63. Wang H (2016) Phys Fluids 28:035102. https://doi.org/10.1063/1.4942514

    Article  CAS  Google Scholar 

  64. Kronenburg A, Bilger R (2001) Combust Sci Technol 166:195. https://doi.org/10.1080/00102200108907826

    Article  CAS  Google Scholar 

  65. Ma MC, Devaud CB (2015) Combust Flame 162:144. https://doi.org/10.1016/j.combustflame.2014.07.008

    Article  CAS  Google Scholar 

  66. Chen JY, Chang WC (1998) Combust Sci Technol 133:343. https://doi.org/10.1080/00102209808952039

    Article  CAS  Google Scholar 

  67. Wang H, Kim K (2015) Proc Combust Inst 35:1137. https://doi.org/10.1016/j.proci.2014.06.017

    Article  CAS  Google Scholar 

  68. McDermott R, Pope S (2007) J Comput Phys 226:947. https://doi.org/10.1016/j.jcp.2007.05.006

    Article  CAS  Google Scholar 

  69. Navarro-Martinez S, Rigopoulos S (2012) Flow Turbul Combust 89:311. https://doi.org/10.1007/s10494-011-9370-z

    Article  CAS  Google Scholar 

  70. Sewerin F, Rigopoulos S (2017) Phys Fluids 29:105105. https://doi.org/10.1063/1.5001343

    Article  CAS  Google Scholar 

  71. Gierth S, Hunger F, Popp S, Wu H, Ihme M, Hasse C (2018) Combust Flame 197:134. https://doi.org/10.1016/j.combustflame.2018.07.023

    Article  CAS  Google Scholar 

  72. Gkantonas S (2021) Predicting soot emissions with advanced turbulent reacting flow modelling. Ph.D. thesis. University of Cambridge. https://doi.org/10.17863/CAM.72449

  73. Elasrag H, Menon S (2009) Combust Flame 156:385. https://doi.org/10.1016/j.combustflame.2008.09.003

    Article  CAS  Google Scholar 

  74. Altantzis C, Frouzakis CE, Tomboulides AG, Matalon M, Boulouchos K (2012) J Fluid Mech 700:329. https://doi.org/10.1017/jfm.2012.136

    Article  CAS  Google Scholar 

  75. Berger L, Kleinheinz K, Attili A, Pitsch H (2019) Proc Combust Inst 37:1879. https://doi.org/10.1016/j.proci.2018.06.072

    Article  CAS  Google Scholar 

  76. Richardson ES, Chen JH (2012) Combust Flame 159:2398. https://doi.org/10.1016/j.combustflame.2012.02.026

    Article  CAS  Google Scholar 

  77. Farrace D, Chung K, Bolla M, Wright YM, Boulouchos K, Mastorakos E (2018) Combust Theory Modell 22(3):411–431. https://doi.org/10.1080/13647830.2017.1398351

    Article  CAS  Google Scholar 

  78. Gkantonas, S., De Oliveira, P. M., Pathania, R., Foale, J., Mastorakos, E. (2022). H2ools: a MATLAB-based package for the analysis of fundamental combustion properties of hydrogen, hydrogen-ammonia and kerosene flames relevant to gas-turbine combustors. Apollo – University of Cambridge Repository. https://doi.org/10.17863/CAM.81618

Download references

Acknowledgements

The authors’ experience on hydrogen gas turbine combustion, which has led to the opinions expressed in this chapter, has been based on research funded by the European Union, the UK Engineering and Physical Sciences Research Council, the UKRI Future Leaders Fellowship, and long-term industrial partners (Rolls-Royce Group, Siemens Energy, Reaction Engines Ltd).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Epaminondas Mastorakos .

Editor information

Editors and Affiliations

Supplementary Material

Supplementary Material

H2ools [78] is a MATLAB-based package containing a range of routines with the aim to analyse results from numerical simulations of fundamental combustion quantities for ammonia-hydrogen-air flames at gas turbine conditions and conduct comparisons with kerosene so as to assist the design of zero-carbon aviation propulsion. The package contains data for thermodynamic and transport properties of fuel-air mixtures, flame temperatures, autoignition delay times, laminar burning velocity, nitrogen oxide (NO\(_{x}\), N2O) pollutant formation and well-stirred reactor computations. In its current form, the data can reveal specific trends between fuels and operating conditions that are useful to the R &D engineer or hydrogen combustion researcher for extrapolating design rules and methodologies and combustor concepts from kerosene to ammonia-hydrogen and hydrogen fuels. Furthermore, it can be used to inform elaborate simulations of the laminar/turbulent combustion of these fuels by appropriate extraction of correlations (e.g., for the laminar burning velocity as a function of temperature and pressure) and tabulation of properties or chemical reaction source terms, typically used by CFD models.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gkantonas, S., Talibi, M., Balachandran, R., Mastorakos, E. (2023). Hydrogen Combustion in Gas Turbines. In: Tingas, EA. (eds) Hydrogen for Future Thermal Engines. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-28412-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28412-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28411-3

  • Online ISBN: 978-3-031-28412-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics