Skip to main content
Log in

Numerical Characterization of a Premixed Hydrogen Flame Under Conditions Close to Flashback

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work presents a numerical study of a technically premixed swirling combustor with central air injection at conditions close to flashback using large-eddy simulation with flamelet modelling. This burner has the characteristics of showing flashback at low equivalence ratios, so numerical simulations are set to identify the mechanisms behind the flashback formation. Experimental findings suggest the axial momentum ratio between fuel and air dominates the flame stabilization mechanism and flashback resistance over mixing and equivalence ratio fluctuations. This aspect is investigated here for two operating conditions with the same axial momentum ratio as in the experiment using a perfectly premixed assumption. The two test cases correspond to two stable operating points, far and close to the flashback point. The study shows the assumption of perfect premixing is valid during the stable operation of the burner up to flashback conditions. The experimental results are well predicted under inert and reacting conditions by using a perfectly premixed mixture. It is found that the non reacting flow field develops a self-excited oscillation in the form of a precessing vortex core. This oscillation is attenuated by the fuel injection due to the respective increase in axial momentum and it is ultimately suppressed in the reacting flow field. Both experiments and simulations confirm the same trends. The analysis of the flames have shown certain dynamics as the flashback point is approached. The flashback resistance of the burner is minimized due to an increase in the velocity deficit of the incoming mixture. The recirculation region is shifted upstream, the central recirculation is altered and the flame position is displaced towards the inlet of the reactants in the combustion chamber. The analysis of instabilities and flow dynamics suggest that the formation of flashback can be attributed to combustion induced vortex breakdown, which in turn is associated to the lower axial momentum introduced by the fuel jets in leaner conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

    MathSciNet  Google Scholar 

  • Billant, P., Chomaz, J.-M., Huerre, P.: Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219 (1998)

    MathSciNet  MATH  Google Scholar 

  • Both, A., Lehmkuhl, O., Mira, D.: Assessment of low-Mach discretisation strategies for a turbulent channel flow with large density ratios. In: International Conference Computational Fluid Dynamics, ICCFD10-323 (2018)

  • Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Finite rate chemistry and presumed pdf models for premixed turbulent combustion. Combust. Flame 146(4), 665–673 (2006)

    Google Scholar 

  • Burmberger, S., Hirsch, C., Sattelmayer, T.: Designing a radial swirler vortex breakdown burner. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 1: Combustion and Fuels, Education. Barcelona, Spain, 8–11 May 2006. pp. 423–431. ASME. https://doi.org/10.1115/GT2006-90497

  • Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier–Stokes galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)

    MathSciNet  MATH  Google Scholar 

  • Chemical-Kinetic Mechanisms for Combustion Applications. San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego. http://combustion.ucsd.edu

  • Codina, R.: Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys. 130(1), 112–140 (2001)

    MathSciNet  MATH  Google Scholar 

  • Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)

    Google Scholar 

  • Dong, H.Q., Robin, V., Mura, A., Champion, M.: Analysis of algebraic closures of the mean scalar dissipation rate of the progress variable applied to stagnating turbulent flames. Flow Turbul. Combust. 90(2), 301–323 (2013)

    Google Scholar 

  • Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: A filtered tabulated chemistry model for les of premixed combustion. Combust. Flame 157(3), 465–475 (2010)

    Google Scholar 

  • Franzelli, B., Riber, E., Gicquel, L.Y.M., Poinsot, T.: Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame 159(2), 621–637 (2012)

    Google Scholar 

  • Fritz, J., Kröner, M., Sattelmayer, T.: Flashback in a swirl burner with cylindrical premixing zone. J. Eng. Gas Turbines Power 126, 276–283 (2004)

    Google Scholar 

  • Galley, D., Ducruix, S., Lacas, F., Veynante, D.: Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence. Combust. Flame 158, 155–171 (2011)

    Google Scholar 

  • Gövert, S., Mira, D., Kok, J.B.W., Vázquez, M., Houzeaux, G.: Turbulent combustion modeling of a confined premixed methane/air jet flame including heat loss effects using tabulated chemistry. Appl. Eng. 156, 804–815 (2015)

    Google Scholar 

  • Gövert, S., Mira, D., Kok, J.B.W., Vázquez, M., Houzeaux, G.: The effect of partial premixing and heat loss on the reacting flow field prediction of a swirl stabilized gas turbine model combustor. Flow Turbul. Combust. 100, 503–534 (2018)

    Google Scholar 

  • Huang, Y., Yang, V.: Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35(4), 293–364 (2009)

    Google Scholar 

  • Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, stream and convergence zones in turbulent flows. Technical Report Center for Turbulent Research (CTR), (S88), (1988)

  • Jochmann, P., Sinigersky, A., Koch, R., Bauer, H.-J.: URANS prediction of flow instabilities of a novel atomizer combustor configuration. In: Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 2: Turbo Expo 2005. Reno, Nevada, USA, 6–9 June 2005. pp. 19–27. ASME. https://doi.org/10.1115/GT2005-68072

  • Juniper, M.P.: Absolute and convective instability in gas turbine fuel injectors. In: Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Copenhagen, Denmark, 11–15 June 2012. pp. 189–198. ASME. https://doi.org/10.1115/GT2012-68253

  • Kiesewetter, F., Konle, M., Sattelmayer, T.: Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone. J. Eng. Gas Turbines Power 129, 929–936 (2007)

    Google Scholar 

  • Lam, S.H.: Using csp to understand complex chemical kinetics. Combust. Sci. Technol. 89(5–6), 375–404 (1993)

    Google Scholar 

  • Lehmkuhl, O., Houzeaux, G., Owen, H., Chrysokentis, G., Rodriguez, I.: A low-dissipation finite element scheme for scale resolving simulations of turbulent flows. J. Comput. Phys. 390, 51–65 (2019). (in press)

    MathSciNet  Google Scholar 

  • Lieuwen, T., McDonell, V., Santavicca, D., Sattelmayer, T.: Burner development and operability issues associated with steady flowing syngas fired combustors. Combust. Sci. Technol. 180(6), 1169–1192 (2008)

    Google Scholar 

  • Massias, A., Diamantis, D., Mastorakos, E., Goussis, D.A.: An algorithm for the construction of global reduced mechanisms with CSP data. Combust. Flame 117(4), 685–708 (1999)

    MATH  Google Scholar 

  • Meier, W., Weigand, P., Duan, X.R., Giezendanner-Thoben, R.: Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 150(1), 2–26 (2007)

    Google Scholar 

  • Mira, D., Jiang, X., Moulinec, C., Emerson, D.R.: Numerical simulations of turbulent jet flames with non-premixed combustion of hydrogen-enriched fuels. Comput. Fluids 88, 688–701 (2013)

    MathSciNet  MATH  Google Scholar 

  • Mira, D., Jiang, X., Moulinec, C., Emerson, D.R.: Numerical assessment of subgrid scale models for scalar transport in large-eddy simulations of hydrogen-enriched fuels. Int. J. Hydrog. Energy 39, 7173–7189 (2014)

    Google Scholar 

  • Mira, D., Lehmkuhl, O., Stathopoulos, P., Tanneberger, T., Thoralf, R., Paschereit, C.O., Vazquez, M., Houzeaux, G.: Numerical investigation of a lean premixed swirl-stabilized hydrogen combustor and conditions close to flashback. In: ASME Turbo Expo 2018, GT2018-76229, (2018)

  • Noh, D., Karlis, E., Navarro-Martinez, S., Hardalupas, Y., Taylor, A.M.K.P., Fredrich, D., Jones, W.P.: Azimuthally-driven subharmonic thermoacoustic instabilities in a swirl-stabilised combustor. Proc. Combust. Instit. 37(4), 5333–5341 (2019)

    Google Scholar 

  • Noiray, N., Bothien, M., Schuermans, B.: Investigation of azimuthal staging concepts in annular gas turbines. Combust. Theory Modell. 15(5), 585–606 (2011)

    MATH  Google Scholar 

  • Oberleithner, K., Stöhr, M., Im, S.H., Arndt, C.M., Steinberg, A.M.: Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: experiments and linear stability analysis. Combust. Flame 162(8), 3100–3114 (2015)

    Google Scholar 

  • Oberleithner, K., Terhaar, S., Rukes, L., Oliver Paschereit, C.: Why nonuniform density suppresses the precessing vortex core. ASME. J. Eng. Gas Turbines Power 135(12), 121506 (2013). https://doi.org/10.1115/1.4025130

    Article  Google Scholar 

  • Palies, P., Durox, D., Schuller, T., Morenton, P., Candel, S.: Dynamics of premixed confined swirling flames. Comptes Rendus Mcanique 337(6), 395–405 (2009). (Combustion for aerospace propulsion)

    Google Scholar 

  • Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. Ed. Edwards, Columbus (2012)

    Google Scholar 

  • Pouransari, Z., Vervisch, L., Johansson, A.V.: Reynolds number effects on statistics and structure of an isothermal reacting turbulent wall-jet. Flow Turbul. Combust. 92(4), 931–945 (2014)

    Google Scholar 

  • Reichel, T.G., Goeckeler, K., Paschereit, O.: Investigation of lean premixed swirl-stabilized hydrogen burner with axial air injection using oh-plif imaging. J. Eng. Gas Turbines Power 137, 111513 (2015)

    Google Scholar 

  • Reichel, T.G., Paschereit, C.O.: Interaction mechanisms of fuel momentum with flashback limits in lean-premixed combustion of hydrogen. Int. J. Hydrog. Eng. 42, 4518–4529 (2017)

    Google Scholar 

  • Reichel, T.G., Terhaar, S., Paschereit, C.O.: Increasing flashback resistance in lean premixed swirl-stabilized hydrogen combustion by axial air injection. J. Eng. Gas Turbines Power 137, 071503 (2015)

    Google Scholar 

  • Reichel, T.G., Terhaar, S., Paschereit, C.O.: Flashback resistance and fuel/air mixing in lean premixed hydrogen combustion. J. Propuls. Power 34(3), 690–701 (2018)

    Google Scholar 

  • Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C.: Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust. Flame 141, 40–54 (2011)

    Google Scholar 

  • Sabel’nikov, V.A., Lipatnikov, A.N.: A simple model for evaluating conditioned velocities in premixed turbulent flames. Combust. Sci. Technol. 183(6), 588–613 (2011)

    Google Scholar 

  • Seidel, V., Marosky, A., Hirsch, C., Sattelmayer, T., Geng, W., Magni, F.: Influence of the inflow confinement on the flashback limits of a premixed swirl burner. In: Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 1A: Combustion, Fuels and Emissions. San Antonio, Texas, USA, 3–7 June 2013. V01AT04A068. ASME. https://doi.org/10.1115/GT2013-94866

  • Sommerer, Y., Galley, D., Poinsot, T., Ducruix, S., Lacas, F., Veynante, D.: Large eddy simulation and experimental study of flashback and blow-off in a lean partially premixed swirled burner. J. Turbul. 5, 037 (2004)

    Google Scholar 

  • Staffelbach, G., Gicquel, L.Y.M., Boudier, G., Poinsot, T.: Large eddy simulation of self excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32(2), 2909–2916 (2009)

    Google Scholar 

  • Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32(2), 93–161 (2006)

    Google Scholar 

  • Taamallah, S., LaBry, Z.A., Shanbhogue, S.J., Ghoniem, A.F.: Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures. Proc. Combust. Instit. 35(3), 3273–3282 (2015)

    Google Scholar 

  • Tangermann, E., Pfitzner, M.: Evaluation of combustion models for combustion-induced vortex breakdown. J. Turbul. 10, 1–21 (2009)

    MathSciNet  MATH  Google Scholar 

  • Tanneberger, T., Reichel, T. G., Krüger, O., Terhaar, S., Paschereit, C.O.: Numerical investigation of the flow field and mixing in a swirl-stabilized burner with a non-swirling axial jet. In: ASME Turbo Expo 2015, pp. GT2015-43382, (2015)

  • Terhaar, S., Reichel, T.G., Schrdinger, C., Rukes, L., Paschereit, C.O., Oberleithner, K.: Vortex breakdown types and global modes in swirling combustor flows with axial injection. J Propuls Power 31(1), 219–229 (2015)

    Google Scholar 

  • Trias, F.X., Lehmkuhl, O.: A self-adaptive strategy for the time integration of navier-stokes equations. Numer. Heat Transf. Part B Fundam. 60(2), 116–134 (2011)

    Google Scholar 

  • Vazquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Aris, R., Mira, D., Calmet, H., Cucchietti, F., Owen, H., Taha, A., Cela, J.M., Valero, M.: Multiphysics engineering simulation toward exascale. J. Comput. Sci. 14, 15–27 (2016)

    MathSciNet  Google Scholar 

  • Ventosa-Molina, J., Lehmkuhl, O., Perez-Segarra, C.D., Oliva, A.: Large eddy simulation of a turbulent diffusion flame: some aspects of subgrid modelling consistency. Flow Turbul. Combust. 99, 209–238 (2017)

    Google Scholar 

  • Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 3670 (2004)

    MATH  Google Scholar 

  • Xiao, W., Huang, Y.: Lean blowout limits of a gas turbine combustor operated with aviation fuel and methane. Heat Mass Transf. 52(5), 1015–1024 (2016)

    Google Scholar 

  • Zhang, F., Habisreuther, P., Hettel, M., Bockhorn, H.: Modelling of a premixed swirl-stabilized flame using a turbulent flame speed closure model in LES. Flow Turbul. Combust. 82, 537–551 (2009)

    MATH  Google Scholar 

  • Zhang, H., Mastorakos, E.: Prediction of global extinction conditions and dynamics in swirling non-premixed flames using LES/CMC modelling. Flow Turbul. Combust. 96, 863889 (2016)

    Google Scholar 

Download references

Acknowledgements

Daniel Mira acknowledges the Juan de la Cierva personal grant IJCI-2015-26686 and Ambrus Both the Marie Sk\l odowska-Curie grant Agreement No. 713673 through the "la Caixa" INPhINIT Fellowship Grant. Computer resources and technical assistance has been provided by the Red Espa\~nola de Supercomputaci\'on (RES) and the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.lrz.de). The TU Berlin would like to acknowledge the funding received from the EU Seventh Framework Program (FP7/2007-2013) under GA284636 and the European Research Council under the ERC GREENEST with GA247322.

Funding

The research leading to these results has received funding through the Spanish Ministry of Economy and Competitiveness in the frame of the CHEST Project (TRA2017-89139-C2-2-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mira, D., Lehmkuhl, O., Both, A. et al. Numerical Characterization of a Premixed Hydrogen Flame Under Conditions Close to Flashback. Flow Turbulence Combust 104, 479–507 (2020). https://doi.org/10.1007/s10494-019-00106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00106-z

Keywords

Navigation