Skip to main content

Part of the book series: Mechanical Engineering Series ((MES))

  • 68 Accesses

Abstract

This chapter gives you a bird’s eye view of solar energy and puts solar energy systems into their proper context with regard to their usefulness and potential uses. The article starts off with a detailed breakdown of the many different types of solar power systems, along with their respective uses, benefits, and drawbacks. It then provides an overview of all the different kinds of thermal systems before moving on to the modeling and optimization issues that are unique to each. The evaluation of these solar energy systems’ performance is a multi-objective optimization issue that relies heavily on a wide range of system and operational elements, as well as environmental or climatic characteristics. This chapter covers not only solar thermal systems but also solar photovoltaic (PV) systems and other hybrid energy sources. The following numbers refer to the modeling and optimization of various solar energy systems using soft computing approaches and are based on the results of previous studies. The chapter concludes with a high-level discussion of the possible reach of future work on modeling and optimizing solar energy systems through the application of numerous distinct soft computing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ladjevardi, S. M., Asnaghi, A., Izadkhast, P. S., & Kashani, A. H. (2013). Applicability of graphite nanofluids in direct solar energy absorption. Solar Energy, 94, 327–334.

    Article  Google Scholar 

  2. Jandacka, D., Durcanska, D., & Bujdos, M. (2017). The contribution of road traffic to particulate matter and metals in air pollution in the vicinity of an urban road. Transportation Research Part D: Transport and Environment, 50, 397–408.

    Article  Google Scholar 

  3. Thind, M. P., Tessum, C. W., Azevedo, I. L., & Marshall, J. D. (2019). Fine particulate air pollution from electricity generation in the US: Health impacts by race, income, and geography. Environmental Science & Technology, 53(23), 14010–14019.

    Article  Google Scholar 

  4. Saidur, R., Meng, T. C., Said, Z., Hasanuzzaman, M., & Kamyar, A. (2012). Evaluation of the effect of nanofluid-based absorbers on direct solar collector. International Journal of Heat and Mass Transfer, 55(21–22), 5899–5907.

    Article  Google Scholar 

  5. Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524.

    Article  Google Scholar 

  6. Khare, V., Nema, S., & Baredar, P. (2016). Solar–wind hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews, 58, 23–33.

    Article  Google Scholar 

  7. Kumar, Y., Ringenberg, J., Depuru, S. S., Devabhaktuni, V. K., Lee, J. W., Nikolaidis, E., Andersen, B., & Afjeh, A. (2016). Wind energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 53, 209–224.

    Article  Google Scholar 

  8. Fridleifsson, I. B. (2001). Geothermal energy for the benefit of the people. Renewable and Sustainable Energy Reviews, 5(3), 299–312.

    Article  Google Scholar 

  9. Nwaji, G. N., Okoronkwo, C. A., Ogueke, N. V., & Anyanwu, E. E. (2019). Hybrid solar water heating/nocturnal radiation cooling system I: A review of the progress, prospects and challenges. Energy and Buildings, 198, 412–430.

    Article  Google Scholar 

  10. Zhu, G., Wendelin, T., Wagner, M. J., & Kutscher, C. (2014). History, current state, and future of linear Fresnel concentrating solar collectors. Solar Energy, 103, 639–652.

    Article  Google Scholar 

  11. Hegedus, S. S., & Luque, A. (2003). Status, trends, challenges and the bright future of solar electricity from photovoltaics. In Handbook of Photovoltaic Science and Engineering , pp. 1–43

    Google Scholar 

  12. Kreith, F., Norton, P., & Brown, D. (1990). A comparison of CO2 emissions from fossil and solar power plants in the United States. Energy, 15(12), 1181–1198.

    Article  Google Scholar 

  13. Soltowski, B., Strachan, S., Anaya-Lara, O., Frame, D., & Dolan, M. (2017, October). Using smart power management control to maximize energy utilization and reliability within a microgrid of interconnected solar home systems. In 2017 IEEE global humanitarian technology conference (GHTC) (pp. 1–5). IEEE.

    Google Scholar 

  14. Huide, F., Xuxin, Z., Lei, M., Tao, Z., Qixing, W., & Hongyuan, S. (2017). A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems. Energy Conversion and Management, 140, 1–13.

    Article  Google Scholar 

  15. Masuda, A., Hara, Y., Shiina, Y., Okamoto, S., & Okamoto, T. (2019). Similarity of potential-induced degradation in superstrate-type thin-film CdTe and Si photovoltaic modules. Japanese Journal of Applied Physics, 58(SB), SBBF07.

    Article  Google Scholar 

  16. Perez-Aparicio, E., Lillo-Bravo, I., Moreno-Tejera, S., & Silva-Perez, M. (2017). Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes, p. 180005.

    Google Scholar 

  17. Wang, K., He, Y., Liu, P., Kan, A., Zheng, Z., Wang, L., Xie, H., & Yu, W. (2020). Highly-efficient nanofluid-based direct absorption solar collector enhanced by reverse-irradiation for medium temperature applications. Renewable Energy, 159, 652–662.

    Article  Google Scholar 

  18. Maxwell, J. C. (1873). A treatise on electricity and magnetism (Vol. 1). Clarendon Press.

    MATH  Google Scholar 

  19. Das, S. K., Choi, S. U., & Patel, H. E. (2006). Heat transfer in nanofluids – A review. Heat Transfer Engineering, 27(10), 3–19.

    Article  Google Scholar 

  20. Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab (ANL).

    Google Scholar 

  21. Esfe, M. H., Karimipour, A., Yan, W. M., Akbari, M., Safaei, M. R., & Dahari, M. (2015). Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 88, 728–734.

    Article  Google Scholar 

  22. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718.

    Article  Google Scholar 

  23. Li, Q., & Xuan, Y. (2002). Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China Series E: Technolgical Science, 45(4), 408–416.

    Article  Google Scholar 

  24. Galindo, J., Serrano, J. R., Guardiola, C., & Cervelló, C. (2006). Surge limit definition in a specific test bench for the characterization of automotive turbochargers. Experimental Thermal and Fluid Science, 30(5), 449–462.

    Article  Google Scholar 

  25. Bhanvase, B., & Barai, D. (2021). Heat transfer applications of nanofluids. In Nanofluids for heat and mass transfer (pp. 341–85). https://doi.org/10.1016/B978-0-12-821955-3.00001-7

  26. Bhanvase, B., & Barai, D. (2021). Nanofluids for heat and mass transfer: Fundamentals, sustainable manufacturing and applications. Academic Press.

    Google Scholar 

  27. Bhanvase, B., & Barai, D., (2021). Other applications of nanofluids. In Nanofluids for heat and mass transfer (pp. 419–36). https://doi.org/10.1016/B978-0-12-821955-3.00012-1.

  28. Hota, S. K., & Diaz, G. (2019). Activated carbon dispersion as absorber for solar water evaporation: A parametric analysis. Solar Energy, 184, 40–51.

    Article  Google Scholar 

  29. Verma, S. K., & Tiwari, A. K. (2015). Progress of nanofluid application in solar collectors: A review. Energy Conversion and Management, 100, 324–346.

    Article  Google Scholar 

  30. Bhalla, V., & Tyagi, H. (2018). Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties. Renewable and Sustainable Energy Reviews, 1(84), 12–42.

    Article  Google Scholar 

  31. Taylor, R. A., Phelan, P. E., Adrian, R. J., Gunawan, A., & Otanicar, T. P. (2012). Characterization of light-induced, volumetric steam generation in nanofluids. International Journal of Thermal Sciences, 56, 1–11.

    Article  Google Scholar 

  32. Tong, Y., Chi, X., Kang, W., & Cho, H. (2020). Comparative investigation of efficiency sensitivity in a flat plate solar collector according to nanofluids. Applied Thermal Engineering, 174, 115346.

    Article  Google Scholar 

  33. Tyagi, H., Phelan, P., & Prasher, R. (2009). Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of Solar Energy Engineering, 131(4).

    Google Scholar 

  34. Karami, M., Bahabadi, M. A., Delfani, S., & Ghozatloo, A. (2014). A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Solar Energy Materials and Solar Cells, 121, 114–118.

    Article  Google Scholar 

  35. Celata, G. P., Annibale, F. D., & Mariani, A. (2011). Nanofluid flow effects on metal surfaces. Energia Ambiente e Innovazione, 4, 94–98.

    Google Scholar 

  36. Yousefi, T., Veysi, F., Shojaeizadeh, E., & Zinadini, S. (2012). An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renewable Energy, 39(1), 293–298.

    Article  Google Scholar 

  37. Kim, H., Ham, J., Park, C., & Cho, H. (2016). Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy, 94, 497–507.

    Article  Google Scholar 

  38. Gu, M., Xu, X., Liu, X., Qiu, L., & Zhang, R. (2005). Preparation and characterization of GdTaO4: Eu3+ sol-gel luminescence thin films. Journal of Sol-Gel Science and Technology, 35(3), 193–196.

    Article  Google Scholar 

  39. Hong, K., Yang, Y., Rashidi, S., Guan, Y., & Xiong, Q. (2021). Numerical simulations of a Cu–water nanofluid-based parabolic-trough solar collector. Journal of Thermal Analysis and Calorimetry, 143(6), 4183–4195.

    Article  Google Scholar 

  40. Radwan, A., Ahmed, M., & Ookawara, S. (2016, June). Performance of concentrated photovoltaic cells using various microchannel heat sink designs. In Energy sustainability (Vol. 50220, p. V001T08A005). American Society of Mechanical Engineers.

    Google Scholar 

  41. Hussein, A. K. (2016). Applications of nanotechnology to improve the performance of solar collectors–Recent advances and overview. Renewable and Sustainable Energy Reviews, 62, 767–792.

    Article  Google Scholar 

  42. Ahmadlouydarab, M., Ebadolahzadeh, M., & Ali, H. M. (2020). Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency. Physica A: Statistical Mechanics and its Applications, 540, 123109.

    Article  Google Scholar 

  43. Sabiha, M. A., Saidur, R., Hassani, S., Said, Z., & Mekhilef, S. (2015). Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Conversion and Management, 105, 1377–1388.

    Article  Google Scholar 

  44. Żółtowska, S., Bielan, Z., Zembrzuska, J., Siwińska-Ciesielczyk, K., Piasecki, A., Zielińska-Jurek, A., & Jesionowski, T. (2021). Modification of structured bio-carbon derived from spongin-based scaffolds with nickel compounds to produce a functional catalyst for reduction and oxidation reactions: Potential for use in environmental protection. Science of The Total Environment, 794, 148692.

    Article  Google Scholar 

  45. Biswas, M. C., Jeelani, S., & Rangari, V. (2017). Influence of biobased silica/carbon hybrid nanoparticles on thermal and mechanical properties of biodegradable polymer films. Composites Communications, 4, 43–53.

    Article  Google Scholar 

  46. Bhanvase, B., & Barai, D. (2021). Physical models for computational studies. In Nanofluids for heat and mass transfer (pp. 193–227). https://doi.org/10.1016/B978-0-12-821955-3.00002-9

  47. Bhanvase, B., & Barai, D. (2021), Computational studies on nanofluid-based systems. In Nanofluids for heat and mass transfer (pp. 229–261).

    Google Scholar 

  48. Bhanvase, B., & Barai, D. (2021). Actual vs theoretical behavior of nanofluids. In Nanofluids for heat and mass transfer (pp. 267–81). https://doi.org/10.1016/B978-0-12-821955-3.00005-4

  49. Lenert, A., & Wang, E. N. (2012). Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Solar Energy, 86(1), 253–265.

    Article  Google Scholar 

  50. Zadeh, P. M., Sokhansefat, T., Kasaeian, A. B., Kowsary, F., & Akbarzadeh, A. (2015). Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy, 82, 857–864.

    Article  Google Scholar 

  51. Ghasemi, S. E., & Ranjbar, A. A. (2017). Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants. International Journal of Hydrogen Energy, 42(34), 21626–21634.

    Article  Google Scholar 

  52. Yılmaz, İ. H., & Mwesigye, A. (2018). Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. Applied Energy, 225, 135–174.

    Article  Google Scholar 

  53. Balakin, B. V., Zhdaneev, O. V., Kosinska, A., & Kutsenko, K. V. (2019). Direct absorption solar collector with magnetic nanofluid: CFD model and parametric analysis. Renewable Energy, 136, 23–32.

    Article  Google Scholar 

  54. Singh, A., Kumar, M., & Khullar, V. (2020). Comprehensive modeling, simulation and analysis of nanoparticles laden volumetric absorption based concentrating solar thermal systems in laminar flow regime. Solar Energy, 211, 31–54.

    Article  Google Scholar 

  55. Khanjari, Y., Pourfayaz, F., & Kasaeian, A. B. (2016). Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management, 122, 263–278.

    Article  Google Scholar 

  56. Rejeb, O., Sardarabadi, M., Ménézo, C., Passandideh-Fard, M., Dhaou, M. H., & Jemni, A. (2016). Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Conversion and Management, 110, 367–377.

    Article  Google Scholar 

  57. Sardarabadi, M., & Passandideh-Fard, M. (2016). Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Solar Energy Materials and Solar Cells, 157, 533–542.

    Article  Google Scholar 

  58. Hosseinzadeh, M., Salari, A., Sardarabadi, M., & Passandideh-Fard, M. (2018). Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Conversion and Management, 160, 93–108.

    Article  Google Scholar 

  59. Kolahan, A., Maadi, S. R., Kazemian, A., Schenone, C., & Ma, T. (2020). Semi-3D transient simulation of a nanofluid-base photovoltaic thermal system integrated with a thermoelectric generator. Energy Conversion and Management, 220, 113073.

    Article  Google Scholar 

  60. Kalani, H., Sardarabadi, M., & Passandideh-Fard, M. (2017). Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector. Applied Thermal Engineering, 113, 1170–1177.

    Article  Google Scholar 

  61. Rashidi, S., Akar, S., Bovand, M., & Ellahi, R. (2018). Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renewable Energy, 115, 400–410.

    Article  Google Scholar 

  62. Kabeel, A. E., Omara, Z. M., & Essa, F. A. (2017). Numerical investigation of modified solar still using nanofluids and external condenser. Journal of the Taiwan Institute of Chemical Engineers, 75, 77–86.

    Article  Google Scholar 

  63. Das, B., Mondol, J. D., Negi, S., Smyth, M., & Pugsley, A. (2021). Experimental performance analysis of a novel sand coated and sand filled polycarbonate sheet based solar air collector. Renewable Energy, 164, 990–1004.

    Article  Google Scholar 

  64. Balamurugan, M., Sahoo, S. K., & Sukchai, S. (2017). Application of soft computing methods for grid connected PV system: A technological and status review. Renewable and Sustainable Energy Reviews, 1(75), 1493–1508.

    Article  Google Scholar 

  65. Hamid, S. A., Othman, M. Y., Sopian, K., & Zaidi, S. H. (2014). An overview of photovoltaic thermal combination (PV/T combi) technology. Renewable and Sustainable Energy Reviews, 38, 212–222.

    Article  Google Scholar 

  66. Hasan, M. A., & Sumathy, K. (2010). Photovoltaic thermal module concepts and their performance analysis: A review. Renewable and Sustainable Energy Reviews, 14(7), 1845–1859.

    Article  Google Scholar 

  67. Lee, Y. S., & Tong, L. I. (2012). Predicting high or low transfer efficiency of photovoltaic systems using a novel hybrid methodology combining rough set theory, data envelopment analysis and genetic programming. Energies, 5(3), 545–560.

    Article  Google Scholar 

  68. Kumar, A., Baredar, P., & Qureshi, U. (2015). Historical and recent development of photovoltaic thermal (PVT) technologies. Renewable and Sustainable Energy Reviews, 42, 1428–1436.

    Article  Google Scholar 

  69. Chow, T. T. (2010). A review on photovoltaic/thermal hybrid solar technology. Applied Energy, 87(2), 365–379.

    Article  Google Scholar 

  70. Ibrahim, A., Othman, M. Y., Ruslan, M. H., Mat, S., & Sopian, K. (2011). Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews, 15(1), 352–365.

    Article  Google Scholar 

  71. Hussain, F., Othman, M. Y. H., Sopian, K., Yatim, B., Ruslan, H., & Othman, H. (2013). Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector. Renewable and Sustainable Energy Reviews, 25, 431–441.

    Article  Google Scholar 

  72. Chandrasekar, M., Rajkumar, S., & Valavan, D. (2015). A review on the thermal regulation techniques for non integrated flat PV modules mounted on building top. Energy and Buildings, 86, 692–697.

    Article  Google Scholar 

  73. Reddy, S. R., Ebadian, M. A., & Lin, C. X. (2015). A review of PV–T systems: Thermal management and efficiency with single phase cooling. International Journal of Heat and Mass Transfer, 91, 861–871.

    Article  Google Scholar 

  74. Aste, N., Beccali, M., & Chiesa, G. (2002). Experimental evaluation of the performance of a prototype hybrid solar photovoltaic-thermal (PV/T) air collector for the integration in sloped roof. In Proceedings of EPIC.

    Google Scholar 

  75. Elsafi, A. M., & Gandhidasan, P. (2015). Comparative study of double-pass flat and compound parabolic concentrated photovoltaic–thermal systems with and without fins. Energy Conversion and Management, 98, 59–68.

    Article  Google Scholar 

  76. Othman, M. Y. H., Yatim, B., Sopian, K., & Bakar, M. N. A. (2005). Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renewable Energy, 30(13).

    Google Scholar 

  77. Tonui, J. K., & Tripanagnostopoulos, Y. (2007). Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable Energy, 32(4), 623–637.

    Article  Google Scholar 

  78. Farshchimonfared, M., Bilbao, J. I., & Sproul, A. B. (2015). Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings. Renewable Energy, 76, 27–35.

    Article  Google Scholar 

  79. Farshchimonfared, M., Bilbao, J. I., & Sproul, A. B. (2016). Full optimisation and sensitivity analysis of a photovoltaic–thermal (PV/T) air system linked to a typical residential building. Solar Energy, 136, 15–22.

    Article  Google Scholar 

  80. Su, D., Jia, Y., Alva, G., Liu, L., & Fang, G. (2017). Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Conversion and Management, 131, 79–89.

    Article  Google Scholar 

  81. Amori, K. E., & Abd-AlRaheem, M. A. (2014). Field study of various air based photovoltaic/thermal hybrid solar collectors. Renewable Energy, 63, 402–414.

    Article  Google Scholar 

  82. Liang, R., Zhang, J., Ma, L., & Li, Y. (2015). Performance evaluation of new type hybrid photovoltaic/thermal solar collector by experimental study. Applied Thermal Engineering, 75, 487–492.

    Article  Google Scholar 

  83. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C., & Matschoss, P. (Eds.). (2011). Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  84. Touafek, K., Haddadi, M., & Malek, A. (2013). Design and modeling of a photovoltaic thermal collector for domestic air heating and electricity production. Energy and Buildings, 59, 21–28.

    Article  Google Scholar 

  85. Tripanagnostopoulos, Y. (2007). Aspects and improvements of hybrid photovoltaic/thermal solar energy systems. Solar Energy, 81(9), 1117–1131.

    Article  Google Scholar 

  86. Varol, Y., Koca, A., Oztop, H. F., & Avci, E. (2010). Forecasting of thermal energy storage performance of phase change material in a solar collector using soft computing techniques. Expert Systems with Applications, 37(4), 2724–2732.

    Article  Google Scholar 

  87. Tagliafico, L. A., Scarpa, F., & De Rosa, M. (2014). Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors–A review. Renewable and Sustainable Energy Reviews, 30, 526–537.

    Article  Google Scholar 

  88. Jubayer, C. M., Karava, P., & Savory, E. (2010, May). CFD simulations for evaluation of forced convective heat transfer coefficients on photovoltaic/thermal systems integrated on the windward roof surface of a low-rise building. In Proceedings of computational wind engineering conference, Chapel Hill

    Google Scholar 

  89. Khelifa, A., Touafek, K., Moussa, H. B., & Tabet, I. (2016). Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector. Solar Energy, 135, 169–176.

    Article  Google Scholar 

  90. Kramer, K., & Helmers, H. (2013). The interaction of standards and innovation: Hybrid photovoltaic–thermal collectors. Solar Energy, 98, 434–439.

    Article  Google Scholar 

  91. Caner, M., Gedik, E., & Keçebaş, A. (2011). Investigation on thermal performance calculation of two type solar air collectors using artificial neural network. Expert Systems with Applications, 38(3), 1668–1674.

    Article  Google Scholar 

  92. Sözen, A., Menlik, T., & Ünvar, S. (2008). Determination of efficiency of flat-plate solar collectors using neural network approach. Expert Systems with Applications, 35(4), 1533–1539.

    Article  Google Scholar 

  93. Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). Building credit scoring models using genetic programming. Expert Systems with Applications, 29(1), 41–47.

    Article  Google Scholar 

  94. Esen, H., Inalli, M., Sengur, A., & Esen, M. (2008). Modeling a ground-coupled heat pump system by a support vector machine. Renewable Energy, 33(8), 1814–1823.

    Article  Google Scholar 

  95. Esen, H., Ozgen, F., Esen, M., & Sengur, A. (2009). Modelling of a new solar air heater through least-squares support vector machines. Expert Systems with Applications, 36(7), 10673–10682.

    Article  Google Scholar 

  96. Esen, H., Ozgen, F., Esen, M., & Sengur, A. (2009). Artificial neural network and wavelet neural network approaches for modelling of a solar air heater. Expert Systems with Applications, 36(8), 11240–11248.

    Article  Google Scholar 

  97. Ammar, M. B., Chaabene, M., & Chtourou, Z. (2013). Artificial neural network based control for PV/T panel to track optimum thermal and electrical power. Energy Conversion and Management, 65, 372–380.

    Article  Google Scholar 

  98. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004, July). Extreme learning machine: A new learning scheme of feedforward neural networks. In 2004 ieee international joint conference on neural networks (IEEE Cat. No. 04CH37541) (Vol. 2, pp. 985–990). IEEE.

    Google Scholar 

  99. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Real-time learning capability of neural networks. IEEE Transactions on Neural Networks, 17(4), 863–878.

    Article  Google Scholar 

  100. Yu, Q., Miche, Y., Séverin, E., & Lendasse, A. (2014). Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing, 128, 296–302.

    Article  Google Scholar 

  101. Wang, X., & Han, M. (2014). Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing, 145, 90–97.

    Article  Google Scholar 

  102. Ghouti, L., Sheltami, T. R., & Alutaibi, K. S. (2013). Mobility prediction in mobile ad hoc networks using extreme learning machines. Procedia Computer Science, 19, 305–312.

    Article  Google Scholar 

  103. Sun, D., Liu, S., & Gong, X. (2020). Review of multimer protein–protein interaction complex topology and structure prediction. Chinese Physics B, 29(10), 108707.

    Article  Google Scholar 

  104. Nian, R., He, B., Zheng, B., Van Heeswijk, M., Yu, Q., Miche, Y., & Lendasse, A. (2014). Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing, 128, 273–284.

    Article  Google Scholar 

  105. Wong, P. K., Wong, K. I., Vong, C. M., & Cheung, C. S. (2015). Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renewable Energy, 74, 640–647.

    Article  Google Scholar 

  106. Jha, P., Das, B., & Gupta, R. (2019). An experimental study of a photovoltaic thermal air collector (PVTAC): A comparison of a flat and the wavy collector. Applied Thermal Engineering, 163, 114344.

    Article  Google Scholar 

  107. Rizwan, M., Jamil, M., Kirmani, S., & Kothari, D. P. (2014). Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters. Energy, 70, 685–691.

    Article  Google Scholar 

  108. Shuvho, M. B. A., Chowdhury, M. A., Ahmed, S., & Kashem, M. A. (2019). Prediction of solar irradiation and performance evaluation of grid connected solar 80KWp PV plant in Bangladesh. Energy Reports, 5, 714–722.

    Article  Google Scholar 

  109. Iqdour, R., & Zeroual, A. (2007). Prediction of daily global solar radiation using fuzzy systems. International Journal of Sustainable Energy, 26(1), 19–29.

    Article  Google Scholar 

  110. Şen, Z. (1998). Fuzzy algorithm for estimation of solar irradiation from sunshine duration. Solar Energy, 63(1), 39–49.

    Article  Google Scholar 

  111. Jose, B. K. (2020). Fuzzy based maximum power point tracking of PV array under non-uniform irradiance conditions. Materials Today: Proceedings, 24, 1835–1842.

    Google Scholar 

  112. Farajdadian, S., & Hosseini, S. H. (2019). Design of an optimal fuzzy controller to obtain maximum power in solar power generation system. Solar Energy, 182, 161–178.

    Article  Google Scholar 

  113. Ramaprabha, R., Balaji, M., & Mathur, B. L. (2012). Maximum power point tracking of partially shaded solar PV system using modified Fibonacci search method with fuzzy controller. International Journal of Electrical Power & Energy Systems, 43(1), 754–765.

    Article  Google Scholar 

  114. Batayneh, W., Owais, A., & Nairoukh, M. (2013). An intelligent fuzzy based tracking controller for a dual-axis solar PV system. Automation in Construction, 29, 100–106.

    Article  Google Scholar 

  115. Sridharan, M., & Anabayan, K. (2014). Performance analysis on concrete photovoltaic/thermal water collectors. International Journal of Engineering in Computer Sciences, 4(6), 12440–12443.

    Google Scholar 

  116. Sridharan, M., Siva Prakash, E., Joshua, R. C., & Karthikeyan, S. (2014). Performance improving methods for series solar flat plate collectors and introduction of new verification tool. International Journal of Innovative Research in Science Engineering and Technology, 3(3), 1155–1161.

    Google Scholar 

  117. Sridharan, M., Siva Prakash, E., & Prasanna, N. (2014). Steady state analysis on efficiency improving methods for series flat plate solar water heaters. In Applied mechanics and materials (Vol. 592, pp. 1784–1788). Trans Tech Publications.

    Google Scholar 

  118. Sridharan, M., Prasanna, N., SivaPrakash, E., & VaradhaRajan, R. (2014). Experimental investigation on series solar flat plate collectors with variable mass flow rates. International Journal of Innovative Research in Science, Engineering and Technology, 3(3), 1150–1154.

    Google Scholar 

  119. Debnath, S., Reddy, J., & Das, B. (2019). An expert system-based modeling and optimization of corrugated plate solar air collector for North Eastern India. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(7), 1–18.

    Article  Google Scholar 

  120. Kishor, N., Das, M. K., Narain, A., & Ranjan, V. P. (2010). Fuzzy model representation of thermosyphon solar water heating system. Solar Energy, 84(6), 948–955.

    Article  Google Scholar 

  121. Vafaei, L. E., & Sah, M. (2017). Predicting efficiency of flat-plate solar collector using a fuzzy inference system. Procedia Computer Science, 120, 221–228.

    Article  Google Scholar 

  122. Jing, O. L., Bashir, M. J., & Kao, J. J. (2015). Solar radiation based benefit and cost evaluation for solar water heater expansion in Malaysia. Renewable and Sustainable Energy Reviews, 48, 328–335.

    Article  Google Scholar 

  123. Hajabdollahi, Z., & Hajabdollahi, H. (2017). Thermo-economic modeling and multi-objective optimization of solar water heater using flat plate collectors. Solar Energy, 155, 191–202.

    Article  Google Scholar 

  124. Nallagownden, P., Huy, T. H. B., Kannan, R., & Dieu, V. N. (2019). Energetic optimization of solar water heating system with flat plate collector using search group algorithm. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 61(2), 306–322.

    Google Scholar 

  125. Farahat, S., Sarhaddi, F., & Ajam, H. (2009). Exergetic optimization of flat plate solar collectors. Renewable Energy, 34(4), 1169–1174.

    Article  Google Scholar 

  126. Ouhammou, B., Aggour, M., & Daouchi, B. (2018). Optimization of the thermal performance of the solar water heater (SWH) using stochastic technique. International Journal of Renewable Energy Research (IJRER), 8(3), 1401–1410.

    Google Scholar 

  127. Wenceslas, K. Y., & Ghislain, T. (2019). Experimental validation of exergy optimization of a flat-plate solar collector in a thermosyphon solar water heater. Arabian Journal for Science and Engineering, 44(3), 2535–2549.

    Article  Google Scholar 

  128. Khademi, M., Jafarkazemi, F., Ahmadifard, E., & Younesnejad, S. (2013). Optimizing exergy efficiency of flat plate solar collectors using SQP and genetic algorithm. In Applied mechanics and materials (Vol. 253, pp. 760–765). Trans Tech Publications Ltd..

    Google Scholar 

  129. Hajabdollahi, F., & Premnath, K. (2017). Numerical study of the effect of nanoparticles on thermoeconomic improvement of a solar flat plate collector. Applied Thermal Engineering, 127, 390–401.

    Article  Google Scholar 

  130. Hajabdollahi, H. (2018, February). Investigating the effect of nanofluid on optimal design of solar flat plate collector. In 2018 5th international conference on renewable energy: generation and applications (ICREGA) (pp. 188–191). IEEE.

    Google Scholar 

  131. Hajabdollahi, Z., Hajabdollahi, H., & Kim, K. C. (2020). Multi-objective optimization of solar collector using water-based nanofluids with different types of nanoparticles. Journal of Thermal Analysis and Calorimetry, 140(3), 991–1002.

    Article  Google Scholar 

  132. Debnath, S., Reddy, J., Das, B., & Jagadish. (2019). Modeling and optimization of flat plate solar air collectors: An integrated fuzzy method. Journal of Renewable and Sustainable Energy, 11(4), 043706.

    Article  Google Scholar 

  133. Reddy, J., Debnath, S., & Das, B. (2019). Energy and exergy analysis of wavy plate solar air collector using a novel hybrid expert system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10), 1–14.

    Article  Google Scholar 

  134. Debnath, S., Reddy, J., & Das, B. (2019). Investigation of thermal performance of SAC variables using fuzzy logic based expert system. Journal of Mechanical Science and Technology, 33(8), 4013–4021.

    Article  Google Scholar 

  135. Rezvani, A., Esmaeily, A., Etaati, H., & Mohammadinodoushan, M. (2019). Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode. Frontiers in Energy, 13(1), 131–148.

    Article  Google Scholar 

  136. Pang, M., Shi, Y., Wang, W., & Pang, S. (2019). Optimal sizing and control of hybrid energy storage system for wind power using hybrid parallel PSO-GA algorithm. Energy Exploration & Exploitation, 37(1), 558–578.

    Article  Google Scholar 

  137. Mellit, A., Kalogirou, S. A., Hontoria, L., & Shaari, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(2), 406–419.

    Article  Google Scholar 

  138. Ohsawa, Y., Emura, S. I., & Arai, K. (1992, April). Optimal operation of photovoltaic/diesel power generation system by neural network. In [1993] Proceedings of the second international forum on applications of neural networks to power systems (pp. 99–103). IEEE.

    Google Scholar 

  139. Lujano-Rojas, J. M., Dufo-López, R., & Bernal-Agustín, J. L. (2013). Probabilistic modelling and analysis of stand-alone hybrid power systems. Energy, 63, 19–27.

    Article  Google Scholar 

  140. Paliwal, P., Patidar, N. P., & Nema, R. K. (2014). Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using particle swarm optimization. Renewable Energy, 63, 194–204.

    Article  Google Scholar 

  141. Kaviani, A. K., Riahy, G. H., & Kouhsari, S. M. (2009). Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages. Renewable Energy, 34(11), 2380–2390.

    Article  Google Scholar 

  142. Merei, G., Berger, C., & Sauer, D. U. (2013). Optimization of an off-grid hybrid PV–Wind–Diesel system with different battery technologies using genetic algorithm. Solar Energy, 97, 460–473.

    Article  Google Scholar 

  143. Kumar, R., Gupta, R. A., & Bansal, A. K. (2013). Economic analysis and power management of a stand-alone wind/photovoltaic hybrid energy system using biogeography based optimization algorithm. Swarm and Evolutionary Computation, 8, 33–43.

    Article  Google Scholar 

  144. Paliwal, N. K., Singh, A. K., Singh, N. K., & Kumar, P. (2019). Optimal sizing and operation of battery storage for economic operation of hybrid power system using artificial bee colony algorithm. International Transactions on Electrical Energy Systems, 29(1), e2685.

    Article  Google Scholar 

  145. Yang, H. X., Lu, L., & Burnett, J. (2003). Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong. Renewable Energy, 28(11), 1813–1824.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, B., Jagadish (2023). Introduction. In: Das, B., Jagadish (eds) Evolutionary Methods Based Modeling and Analysis of Solar Thermal Systems. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-031-27635-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27635-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27634-7

  • Online ISBN: 978-3-031-27635-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics