Skip to main content

MLC at HECKTOR 2022: The Effect and Importance of Training Data When Analyzing Cases of Head and Neck Tumors Using Machine Learning

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13626))

Included in the following conference series:

Abstract

Head and neck cancers are the fifth most common cancer worldwide, and recently, analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis. Even though the results look promising, more research is needed to further validate and improve the results. This paper presents the work done by team MLC for the 2022 version of the HECKTOR grand challenge held at MICCAI 2022. For Task 1, the automatic segmentation task, our approach was, in contrast to earlier solutions using 3D segmentation, to keep it as simple as possible using a 2D model, analyzing every slice as a standalone image. In addition, we were interested in understanding how different modalities influence the results. We proposed two approaches; one using only the CT scans to make predictions and another using a combination of the CT and PET scans. For Task 2, the prediction of recurrence-free survival, we first proposed two approaches, one where we only use patient data and one where we combined the patient data with segmentations from the image model. For the prediction of the first two approaches, we used Random Forest. In our third approach, we combined patient data and image data using XGBoost. Low kidney function might worsen cancer prognosis. In this approach, we therefore estimated the kidney function of the patients and included it as a feature. Overall, we conclude that our simple methods were not able to compete with the highest-ranking submissions, but we still obtained reasonably good scores. We also got interesting insights into how the combination of different modalities can influence the segmentation and predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/voreille/hecktor/blob/master/src/resampling/resample_2022.py.

  2. 2.

    https://github.com/vlbthambawita/hecktor_2022_MLC.

  3. 3.

    https://github.com/vlbthambawita/hecktor_2022_MLC.

References

  1. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2022: automatic head and neck tumor segmentation in PET/CT. In: Head and Neck Tumor Segmentation and Outcome Prediction (2022)

    Google Scholar 

  2. Bandyk, M.G., Gopireddy, D.R., Lall, C., Balaji, K., Dolz, J.: MRI and CT bladder segmentation from classical to deep learning based approaches: Current limitations and lessons. Comput. Biol. Med. 134, 104472 (2021)

    Article  Google Scholar 

  3. Biewald, L.: Experiment tracking with weights and biases (2020). https://www.wandb.com/

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  6. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2) (2020). https://doi.org/10.3390/info11020125, https://www.mdpi.com/2078-2489/11/2/125

  7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

  8. Cockcroft, D.W., Gault, H.: Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976). https://doi.org/10.1159/000180580

    Article  Google Scholar 

  9. Duran, A., Dussert, G., Rouvière, O., Jaouen, T., Jodoin, P.M., Lartizien, C.: Prostattention-net: a deep attention model for prostate cancer segmentation by aggressiveness in MRI scans. Med. Image Anal. 77, 102347 (2022)

    Article  Google Scholar 

  10. Gerstner, A.: Early detection in head and neck cancer - current state and future perspectives. GMS Current Topics Otorhinolaryngol. Head Neck Surg. 7 (2008)

    Google Scholar 

  11. Hashibe, M., et al.: Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the international head and neck cancer epidemiology consortium. Cancer Epidemiol. Biomarkers Prev. 18(2), 541–550 (2009). https://doi.org/10.1158/1055-9965.EPI-08-0347

    Article  Google Scholar 

  12. Iakubovskii, P.: Segmentation models pytorch. https://github.com/qubvel/segmentation_models.pytorch (2019)

  13. Itseez: Open source computer vision library. https://github.com/itseez/opencv (2015)

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Lundberg, S.M., et al.: Explainable AI for trees: from local explanations to global understanding (2019). https://doi.org/10.48550/arXiv.1905.04610

  16. Mittmann, B.J., et al.: Deep learning-based classification of DSA image sequences of patients with acute ischemic stroke. Int. J. Comput. Assist. Radiol. Surg. 17, 1–9 (2022). https://doi.org/10.1007/s11548-022-02654-8

    Article  Google Scholar 

  17. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022). https://doi.org/10.1016/j.media.2021.102336

    Article  Google Scholar 

  18. Outeiral, R.R., et al.: Strategies for tackling the class imbalance problem of oropharyngeal primary tumor segmentation on magnetic resonance images. Phys. Imaging Radiat. Oncol. 23, 144–149 (2022)

    Article  Google Scholar 

  19. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  20. Ren, J., Eriksen, J.G., Nijkamp, J., Korreman, S.S.: Comparing different CT, pet and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation. Acta Oncol. 60(11), 1399–1406 (2021)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. e Silva, V.T.D.C., Costalonga, E.C., Coelho, F.O., Caires, R.A., Burdmann, E.A.: Assessment of kidney function in patients with cancer. Adv. Chronic Kidney Dis. 25(1), 49–56 (2018)

    Google Scholar 

  23. Staff, M.C.: Creatinine tests. https://www.mayoclinic.org/tests-procedures/creatinine-test/about/pac-20384646 (2021)

  24. Thambawita, V.L.B., Hicks, S., Halvorsen, P., Riegler, M.: Divergentnets: Medical image segmentation by network ensemble. In: Proceedings of the International Workshop and Challenge on Computer Vision in Endoscopy (EndoCV), pp. 27–38 (2021)

    Google Scholar 

  25. Wahid, K.A.: Evaluation of deep learning-based multiparametric MRI oropharyngeal primary tumor auto-segmentation and investigation of input channel effects: Results from a prospective imaging registry. Clin. Transl. Radiat. Oncol. 32, 6–14 (2022)

    Article  Google Scholar 

  26. Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: Simpleitk image-analysis notebooks: a collaborative environment for education and reproducible research. J. Digit. Imaging 31(3), 290–303 (2018)

    Article  Google Scholar 

  27. Young, H.P.: Monotonic solutions of cooperative games. Internat. J. Game Theory 14, 65–72 (1985). https://doi.org/10.1007/BF01769885

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vajira Thambawita or Steven A. Hicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thambawita, V., Storås, A.M., Hicks, S.A., Halvorsen, P., Riegler, M.A. (2023). MLC at HECKTOR 2022: The Effect and Importance of Training Data When Analyzing Cases of Head and Neck Tumors Using Machine Learning. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2022. Lecture Notes in Computer Science, vol 13626. Springer, Cham. https://doi.org/10.1007/978-3-031-27420-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27420-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27419-0

  • Online ISBN: 978-3-031-27420-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics