Skip to main content

Intraoperative Neuro-monitoring During Spondylolisthesis Surgery

  • Chapter
  • First Online:
Spondylolisthesis

Abstract

The development and maturation of the science and technology behind intraoperative neuro-monitoring (IONM) has been fundamental in the evolution of modern spinal deformity surgery. A number of studies have found that IONM is a highly sensitive and specific tool to recognize electrophysiologic changes at the level of the spinal cord. However, the literature describing the objective surgical outcomes for high-grade spondylolisthesis have a high rate of transient and permanent neuropraxia. The incidence of transient neuropraxia may be as high as 25% and permanent deficit may be up to 10% based on surgical technique, severity, and approach. This chapter will review several of the commonly used modalities for IONM and, also, present the authors’ technique for using the multiple IONM modalities including triggered EMG of the nerve root to identify potential nerve root lesions secondary to compression and/or stretch during reduction and stabilization of spondylolisthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nash CL Jr, Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res. 1977;126:100–5.

    Google Scholar 

  2. Vauzelle C, Stagnara P, Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop Relat Res. 1973;93:173–8.

    Article  Google Scholar 

  3. Bose B, Sestokas AK, Schwartz DM. Neurophysiological monitoring of spinal cord function during instrumented anterior cervical fusion. Spine J. 2004;4:202–7.

    Article  PubMed  Google Scholar 

  4. Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Assessment of corticospinal and somatosensory conduction simultaneously during scoliosis surgery. Electroencephalogr Clin Neurophysiol. 1992;85:388–96.

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Sterio D, Ming X, Para DD, Butusova M, Tong T, et al. Success rate of motor evoked potentials for intraoperative neurophysiologic monitoring: effects of age, lesion location, and preoperative neurologic deficits. J Clin Neurophysiol. 2007;24:281–5.

    Article  PubMed  Google Scholar 

  6. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27(4):E6.

    Article  PubMed  Google Scholar 

  7. Thuet ED, Winscher JC, Padberg AM, Bridwell KH, Lenke LG, Dobbs MB, Schootman M, Luhmann SJ. Validity and reliability of intraoperative monitoring in pediatric spinal deformity surgery: a 23-year experience of 3436 surgical cases. Spine (Phila Pa 1976). 2010;35(20):1880–6.

    Article  PubMed  Google Scholar 

  8. Tsai RY, Yang RS, Nuwer MR, Kanim LE, Delamarter RB, Dawson EG. Intraoperative dermatomal evoked potential monitoring fails to predict outcome from lumbar decompression surgery. Spine. 1997;22:1970–5.

    Article  CAS  PubMed  Google Scholar 

  9. Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20:347–77.

    Article  PubMed  Google Scholar 

  10. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285:227.

    Article  CAS  PubMed  Google Scholar 

  11. Keith RW, Stambough JL, Awender SH. Somatosensory cortical evoked potentials: a review of 100 cases of intraoperative spinal surgery monitoring. J Spinal Disord. 1990;3:220–6.

    Article  CAS  PubMed  Google Scholar 

  12. Chiappa K, Hill R. Short latency somatosensory evoked potentials methodology. In: Chiappa K, editor. Evoked potentials in clinical medicine. Philadelphia, PA: Lippincott-Raven; 1997.

    Google Scholar 

  13. Tsai TM, Tsai CL, Lin TS, Lin CC, Jou IM. Value of dermatomal somatosensory evoked potentials in detecting acute nerveroot injury: an experimental study with special emphasis on stimulus intensity. Spine. 2005;30:E540–6.

    Article  PubMed  Google Scholar 

  14. Sala F. Improving spinal cord monitoring: a neurosurgeon’s view. Clin Neurophysiol. 2009;120:649–50.

    Article  PubMed  Google Scholar 

  15. Pechstein U, Nadstawek J, Zentner J, Schramm J. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol. 1998;108:175–81.

    Article  CAS  PubMed  Google Scholar 

  16. Calancie B, Molano MR. Alarm criteria for motor-evoked potentials: what’s wrong with the “presence-or-absence” approach? Spine. 2008;33:406–14.

    Article  PubMed  Google Scholar 

  17. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96:6–11.

    Article  CAS  PubMed  Google Scholar 

  18. Holland NR. Intraoperative electromyography during thoracolumbar spinal surgery. Spine. 1998;23:1915–22.

    Article  CAS  PubMed  Google Scholar 

  19. Jones SC, Fernau R, Woeltjen BL. Use of somatosensory evoked potentials to detect peripheral ischemia and potential injury resulting from positioning of the surgical patient: case reports and discussion. Spine J. 2004;4:360–2.

    Article  PubMed  Google Scholar 

  20. Jones SJ, Buonamassa S, Crockard HA. Two cases of quadriparesis following anterior cervical discectomy, with normal perioperative somatosensory evoked potentials. J Neurol Neurosurg Psychiatry. 2003;74:273–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang R, Reddy RP, Coutinho DV, Chang YF, Anetakis KM, Crammond DJ, Balzer JR, Thirumala PD. Diagnostic accuracy of SSEP changes during lumbar spine surgery for predicting postoperative neurological deficit: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2021;46(24):E1343–52.

    Article  PubMed  Google Scholar 

  22. Aglio LS, Romero R, Desai S, Ramirez M, Gonzalez AA, Gugino LD. The use of transcranial magnetic stimulation for monitoring descending spinal cord motor function. Clin Electroencephalogr. 2002;33:30–41.

    Article  PubMed  Google Scholar 

  23. Ben-David B, Haller G, Taylor P. Anterior spinal fusion complicated by paraplegia. A case report of a false negative somatosensory-evoked potential. Spine. 1987;12:536–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ben-David B, Taylor PD, Haller GS. Posterior spinal fusion complicated by posterior column injury. A case report of a false-negative wake-up test. Spine. 1987;12:540–3.

    Article  CAS  PubMed  Google Scholar 

  25. Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119:248–64.

    Article  PubMed  Google Scholar 

  26. Minahan RE, Sepkuty JP, Lesser RP, Sponseller PD, Kostuik JP. Anterior spinal cord injury with preserved neurogenic‘motor’ evoked potentials. Clin Neurophysiol. 2001;112:1442–50.

    Article  CAS  PubMed  Google Scholar 

  27. Langeloo DD, Lelivelt A, Louis Journee H, Slappendel R, deKleuver M. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine. 2003;28:1043–50.

    Article  PubMed  Google Scholar 

  28. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery. 1997;41:1327–36.

    Article  CAS  PubMed  Google Scholar 

  29. Hsu B, Cree AK, Lagopoulos J, Cummine JL. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine. 2008;33:1100–6.

    Article  PubMed  Google Scholar 

  30. Quinones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, et al. Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery. 2005;56:982–93.

    PubMed  Google Scholar 

  31. Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75:584–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kawaguchi M, Hayashi H, Yamamoto Y, Furuya H. Recent advances in the monitoring of myogenic motor-evoked potentials: development of post-tetanic motor-evoked potentials. J Anesth. 2008;22:489–92.

    Article  PubMed  Google Scholar 

  33. Pajewski TN, Arlet V, Phillips LH. Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur Spine J. 2007;16(2 Suppl):S115–29.

    Article  PubMed  Google Scholar 

  34. Kelleher MO, Tan G, Sarjeant R, Fehlings MG. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8:215–21.

    Article  PubMed  Google Scholar 

  35. Owen JH, Padberg AM, Spahr-Holland L, Bridwell KH, Keppler L, Steffee AD. Clinical correlation between degenerative spine disease and dermatomal somatosensory-evoked potentials in humans. Spine. 1991;16(6 Suppl):S201–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus. 1998;4(5):e1.

    Article  CAS  PubMed  Google Scholar 

  37. Jimenez JC, Sani S, Braverman B, Deutsch H, Ratliff JK. Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine. 2005;3:92–7.

    Article  PubMed  Google Scholar 

  38. Calancie B, Madsen P, Lebwohl N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine. 1994;19:2780–6.

    Article  CAS  PubMed  Google Scholar 

  39. Shi YB, Binette M, Martin WH, Pearson JM, Hart RA. Electrical stimulation for intraoperative evaluation of thoracic pedicle screw placement. Spine. 2003;28:595–601.

    Article  PubMed  Google Scholar 

  40. Raynor BL, Lenke LG, Kim Y, Hanson DS, Wilson-Holde TJ, Bridwell KH, et al. Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine. 2002;27:2030–5.

    Article  PubMed  Google Scholar 

  41. Fan D, Schwartz DM, Vaccaro AR, Hilibrand AS, Albert TJ. Intraoperative neurophysiologic detection of iatrogenic C5 nerve root injury during laminectomy for cervical compression myelopathy. Spine. 2002;27:2499–502.

    Article  PubMed  Google Scholar 

  42. Hilibrand AS, Schwartz DM, Sethuraman V, Vaccaro AR, Albert TJ. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am. 2004;86-A:1248–53.

    Article  Google Scholar 

  43. MacDonald DB, Al Zayed Z, Khoudeir I, Stigsby B. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine. 2003;28:194–203.

    Article  PubMed  Google Scholar 

  44. Bindal RK, Ghosh S. Intraoperative electromyography monitoring in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2007;6:126–32.

    Article  PubMed  Google Scholar 

  45. Khan MH, Smith PN, Balzer JR, Crammond D, Welch WC, Gerszten P, et al. Intraoperative somatosensory evoked potential monitoring during cervical spine corpectomy surgery: experience with 508 cases. Spine. 2006;31:E105–13.

    Article  PubMed  Google Scholar 

  46. Quraishi NA, Lewis SJ, Kelleher MO, Sarjeant R, Rampersaud YR, Fehlings MG. Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine (Phila Pa 1976). 2009;34:1504–12.

    Article  PubMed  Google Scholar 

  47. Shufflebarger HL, Geck MJ. High-grade isthmic dysplastic spondylolisthesis: monosegmental surgical treatment. Spine (Phila Pa 1976). 2005;30(6 Suppl):S42–8.

    Article  PubMed  Google Scholar 

  48. Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine. 2004;29:677–84.

    Article  PubMed  Google Scholar 

  49. Paradiso G, Lee GY, Sarjeant R, Hoang L, Massicotte EM, Fehlings MG. Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with long-term follow-up. Spine (Phila Pa 1976). 2006;31:2095–102.

    Article  PubMed  Google Scholar 

  50. Husain AM, Shah D. Prognostic value of neurophysiologic intraoperative monitoring in tethered cord syndrome surgery. J Clin Neurophysiol. 2009;26:244–7.

    Article  PubMed  Google Scholar 

  51. Khealani B, Husain AM. Neurophysiologic intraoperative monitoring during surgery for tethered cord syndrome. J Clin Neurophysiol. 2009;26:76–81.

    Article  PubMed  Google Scholar 

  52. Lieberman JA, Lyon R, Jasiukaitis P, Berven SH, Burch S, Feiner J. The reliability of motor evoked potentials to predict dorsiflexion injuries during lumbosacral deformity surgery: importance of multiple myotomal monitoring. Spine J. 2019;19(3):377–85.

    Article  PubMed  Google Scholar 

  53. Petraco DM, Spivak JM, Cappadona JG, Kummer FJ, Neuwirth MG. An anatomic evaluation of L5 nerve stretch in spondylolisthesis reduction. Spine (Phila Pa 1976). 1996;21(10):1133–8; discussion 1139.

    Article  CAS  PubMed  Google Scholar 

  54. Sutter M, Eggspuehler A, Muller A, Dvorak J. Multimodal intraoperative monitoring: an overview and proposal of methodology based on 1,017 cases. Eur Spine J. 2007;16(Suppl 2):S153–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asghar, J.K., Guiroy, A.J., Shufflebarger, H.L. (2023). Intraoperative Neuro-monitoring During Spondylolisthesis Surgery. In: Wollowick, A.L., Sarwahi, V. (eds) Spondylolisthesis. Springer, Cham. https://doi.org/10.1007/978-3-031-27253-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27253-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27252-3

  • Online ISBN: 978-3-031-27253-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics