Skip to main content

Pharmacogenetics of Anticancer Drugs: Clinical Response and Toxicity

  • Chapter
  • First Online:
Therapeutic Approaches in Cancer Treatment

Abstract

Cancer is the most challenging disease for medical professionals to treat. The factors underlying the complicated situation include anticancer drug-associated toxicity, non-specific response, low therapeutic window, variable treatment outcomes, development of drug resistance, treatment complications, and cancer recurrence. The remarkable advancement in biomedical sciences and genetics, over the past few decades, however, is changing the dire situation. The discovery of gene polymorphism, gene expression, biomarkers, particular molecular targets and pathways, and drug-metabolizing enzymes have paved the way for the development and provision of targeted and individualized anticancer treatment. Pharmacogenetics is the study of genetic factors having the potential to affect clinical responses and pharmacokinetic and pharmacodynamic behaviors of drugs. This chapter emphasizes pharmacogenetics of anticancer drugs and its applications in improving treatment outcomes, selectivity, toxicity of the drugs, and discovering and developing personalized anticancer drugs and genetic methods for prediction of drug response and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Koofee DAF, Mubarak SMH (2020) Genetic polymorphisms. IntechOpen. https://doi.org/10.5772/intechopen.88063

  2. Abbott LH, Michor F (2006) Mathematical models of targeted cancer therapy. Br J Cancer 95(9):1136–1141. https://doi.org/10.1038/sj.bjc.6603310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adachi M, Reid G, Schuetz JD (2002) Therapeutic and biological importance of getting nucleotides out of cells: a case for the ABC transporters, MRP4 and 5. Adv Drug Deliv Rev 54(10):1333–1342

    Article  CAS  PubMed  Google Scholar 

  4. Afzal S, Jensen SA, Vainer B, Vogel U, Matsen JP, Sørensen JB, Andersen PK, Poulsen HE (2009) MTHFR polymorphisms and 5-FU-based adjuvant chemotherapy in colorectal cancer. Ann Oncol 20(10):1660–1666. https://doi.org/10.1093/annonc/mdp046

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed S, Zhou Z, Zhou J, Chen S-Q (2016) Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genomics Proteomics Bioinform 14(5):298–313. https://doi.org/10.1016/j.gpb.2016.03.008

    Article  Google Scholar 

  6. Alomar MJ (2014) Factors affecting the development of adverse drug reactions (review article). Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 22(2):83–94. https://doi.org/10.1016/j.jsps.2013.02.003

    Article  Google Scholar 

  7. Alwi ZB (2005) The use of SNPs in pharmacogenomics studies. Malays J Med Sci MJMS 12(2):4–12. https://pubmed.ncbi.nlm.nih.gov/22605952

  8. Alymani NA, Smith MD, Williams DJ, Petty RD (2010) Predictive biomarkers for personalised anti-cancer drug use: discovery to clinical implementation. Eur J Cancer 46(5):869–879. https://doi.org/10.1016/j.ejca.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  9. Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, Sartor AO, Scher HI (2012) Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol 61(3):549–559. https://doi.org/10.1016/j.eururo.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Astras G, Papagiannopoulos CI, Kyritsis KA, Markitani C, Vizirianakis IS (2020) Pharmacogenomic testing to guide personalized cancer medicine decisions in private oncology practice: a case study [original research]. Front Oncol 10(521). https://doi.org/10.3389/fonc.2020.00521

  11. Awad MM, Shaw AT (2014) ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol 12(7):429–439

    PubMed  PubMed Central  Google Scholar 

  12. Barratt DT, Somogyi AA (2017) Role of pharmacogenetics in personalised imatinib dosing. Transl Cancer Res 6(S10):S1541–S1541S1557

    Google Scholar 

  13. Baxter SW, Campbell IG (2001) Re: population-based, case–control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst 93(7):557–558

    Article  CAS  PubMed  Google Scholar 

  14. Beauclair S, Formento P, Fischel J, Lescaut W, Largillier R, Chamorey E, Hofman P, Ferrero J-M, Pages G, Milano G (2007) Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Ann Oncol 18(8):1335–1341

    Article  CAS  PubMed  Google Scholar 

  15. Bertholee D, Maring JG, Van Kuilenburg ABP (2017) Genotypes affecting the pharmacokinetics of anticancer drugs. Clin Pharmacokinet 56(4):317–337. https://doi.org/10.1007/s40262-016-0450-z

    Article  CAS  PubMed  Google Scholar 

  16. Bins S, Huitema AD, Laven P, El Bouazzaoui S, Yu H, van Erp N, van Herpen C, Hamberg P, Gelderblom H, Steeghs N (2019) Impact of CYP3A4*22 on pazopanib pharmacokinetics in cancer patients. Clin Pharmacokinet 58(5):651–658

    Article  CAS  PubMed  Google Scholar 

  17. Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Jin Y, Storniolo AM, Nikoloff DM, Wu L (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80(1):61–74

    Article  CAS  PubMed  Google Scholar 

  18. Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, Riely GJ, Solomon B, Ou SH, Kim DW, Salgia R, Fidias P, Engelman JA, Gandhi L, Jänne PA, Costa DB, Shapiro GI, Lorusso P, Ruffner K, Stephenson P, Tang Y, Wilner K, Clark JW, Shaw AT (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 13(10):1011–1019. https://doi.org/10.1016/s1470-2045(12)70344-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carethers JM (2008) Systemic treatment of advanced colorectal cancer: tailoring therapy to the tumor. Ther Adv Gastroenterol 1(1):33–42

    Article  Google Scholar 

  20. Carr DF, Turner RM, Pirmohamed M (2021) Pharmacogenomics of anticancer drugs: personalising the choice and dose to manage drug response. Br J Clin Pharmacol 87(2):237–255

    Article  PubMed  Google Scholar 

  21. Carreira S, Romanel A, Goodall J, Grist E, Ferraldeschi R, Miranda S, Prandi D, Lorente D, Frenel J-S, Pezaro C (2014) Tumor clone dynamics in lethal prostate cancer. Sci Transl Med 6(254):254ra125–254ra125

    Google Scholar 

  22. Cerić T, Obralić N, Kapur-Pojskić L, Macić D, Beslija S, Pasić A, Cerić S (2010) Investigation of IVS14+ 1G> a polymorphism of DPYD gene in a group of Bosnian patients treated with 5-Fluorouracil and capecitabine. Bosn J Basic Med Sci 10(2):133–139. https://doi.org/10.17305/bjbms.2010.2712

  23. Cerri E, Falcone A, Innocenti F (2007) Cancer pharmacogenomics: germline DNA, tumor DNA, or both? Curr Pharmacogenomics 5(2):87–101. https://doi.org/10.2174/157016007780831781

  24. Chan HT, Chin YM, Low SK (2019) The roles of common variation and somatic mutation in cancer pharmacogenomics. Oncol Ther 7(1):1–32. https://doi.org/10.1007/s40487-018-0090-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chau CH, Rixe O, McLeod H, Figg WD (2008) Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res 14(19):5967–5976. https://doi.org/10.1158/1078-0432.ccr-07-4535

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chowbay B, Zhou S, Lee EJ (2005) An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab Rev 37(2):327–378. https://doi.org/10.1081/dmr-28805

    Article  CAS  PubMed  Google Scholar 

  27. Cohen N, Frangiosa T (2008) Challenges, opportunities, and evolving landscapes in pharmacogenomics and personalized medicine. In: Cohen N (ed) Pharmacogenomics and personalized medicine. Humana Press, pp 1–26. https://doi.org/10.1007/978-1-59745-439-1_1

  28. Cole DN, Carlson JA, Wilson VL (2008) Human germline and somatic cells have similar TP53 and Kirsten-RAS gene single base mutation frequencies. Environ Mol Mutagen 49(6):417–425. https://doi.org/10.1002/em.20390

    Article  CAS  PubMed  Google Scholar 

  29. Cortes JE, Kim D-W, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley J, Khoury HJ, Talpaz M (2012) A pivotal phase 2 trial of ponatinib in patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) resistant or intolerant to dasatinib or nilotinib, or with the T315I BCR-ABL mutation: 12-month follow-up of the PACE trial. In: American Society of Hematology

    Google Scholar 

  30. Costa DB, Shaw AT, Ou SH, Solomon BJ, Riely GJ, Ahn MJ, Zhou C, Shreeve SM, Selaru P, Polli A, Schnell P, Wilner KD, Wiltshire R, Camidge DR, Crinò L (2015) Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol 33(17):1881–1888. https://doi.org/10.1200/jco.2014.59.0539

    Article  CAS  PubMed  Google Scholar 

  31. Damjanov I (2009) Chapter 5. Neoplasia. In: Damjanov I (ed) Pathology secrets, 3rd edn. Mosby, pp 76–97. https://doi.org/10.1016/B978-0-323-05594-9.00005-2

  32. Danesi R, De Braud F, Fogli S, Di Paolo A, Del Tacca M (2001) Pharmacogenetic determinants of anti-cancer drug activity and toxicity. Trends Pharmacol Sci 22(8):420–426. https://doi.org/10.1016/s0165-6147(00)01742-9

    Article  CAS  PubMed  Google Scholar 

  33. Darbar D, Roden DM (2006) Pharmacogenetics of antiarrhythmic therapy. Expert Opin Pharmacother 7(12):1583–1590

    Article  CAS  PubMed  Google Scholar 

  34. de Graan A-JM, Elens L, Sprowl JA, Sparreboom A, Friberg LE, van der Holt B, Pleun J, de Bruijn P, Engels FK, Eskens FA (2013) CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res 19(12):3316–3324

    Article  PubMed  PubMed Central  Google Scholar 

  35. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S (2018) Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet 57(10):1229–1254. https://doi.org/10.1007/s40262-018-0644-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Mattia E, Toffoli G (2009) C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy personalisation. Eur J Cancer 45(8):1333–1351. https://doi.org/10.1016/j.ejca.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  37. Deenen MJ, Cats A, Beijnen JH, Schellens JHM (2011) Part 1: background, methodology, and clinical adoption of pharmacogenetics. Oncologist 16(6):811–819. https://doi.org/10.1634/theoncologist.2010-0258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Del Rio M, Molina F, Bascoul-Mollevi C, Copois V, Bibeau F, Chalbos P, Bareil C, Kramar A, Salvetat N, Fraslon C (2007) Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J Clin Oncol 25(7):773

    Article  PubMed  Google Scholar 

  39. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310(3):1062–1075

    Article  CAS  PubMed  Google Scholar 

  40. Deverka PA, Vernon J, McLeod HL (2010) Economic opportunities and challenges for pharmacogenomics. Annu Rev Pharmacol Toxicol 50:423–437. https://doi.org/10.1146/annurev.pharmtox.010909.105805

    Article  CAS  PubMed  Google Scholar 

  41. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

    Article  PubMed  Google Scholar 

  42. Douillard J, Cunningham D, Roth A, Navarro M, James R, Karasek P, Jandik P, Iveson T, Carmichael J, Alakl M (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. The Lancet 355(9209):1041–1047

    Article  CAS  Google Scholar 

  43. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037. https://doi.org/10.1056/nejm200104053441401

    Article  CAS  PubMed  Google Scholar 

  44. Duncan M (2008) Applications of pharmacogenomics in drug discovery. In: Pharmacogenomics and personalized medicine. Springer, pp 73–87

    Google Scholar 

  45. Eichelbaum M, Ingelman-Sundberg M, Evans WE (2006) Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:119–137

    Article  CAS  PubMed  Google Scholar 

  46. Elshimali YI, Wu Y, Khaddour H, Wu Y, Gradinaru D, Sukhija H, Chung SS, Vadgama JV (2018) Optimization of cancer treatment through overcoming drug resistance. J Cancer Res Oncobiology 1(2):107. https://doi.org/10.31021/jcro.20181107

  47. Evans WE, McLeod HL (2003) Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 348(6):538–549

    Article  CAS  PubMed  Google Scholar 

  48. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286(5439):487–491. https://doi.org/10.1126/science.286.5439.487

    Article  CAS  PubMed  Google Scholar 

  49. Fareed M, Afzal M (2013) Single nucleotide polymorphism in genome-wide association of human population: a tool for broad spectrum service. Egypt J Med Hum Genet 14(2):123–134

    Article  Google Scholar 

  50. Feigelson HS, Goddard KAB, Hollombe C, Tingle SR, Gillanders EM, Mechanic LE, Nelson SA (2014) Approaches to integrating germline and tumor genomic data in cancer research. Carcinogenesis 35(10):2157–2163. https://doi.org/10.1093/carcin/bgu165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fleishman SJ, Schlessinger J, Ben-Tal N (2002) A putative molecular-activation switch in the transmembrane domain of erbB2. Proc Natl Acad Sci 99(25):15937–15940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gemignani F (2005) Polymorphisms of the Dopamine Receptor Gene DRD2 and Colorectal Cancer Risk. Cancer Epidemiol Biomark Prev 14(7):1633–1638. https://doi.org/10.1158/1055-9965.epi-05-0057

    Article  CAS  Google Scholar 

  53. Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard J-P (2000) Mechanisms of action of methotrexate. Immunopharmacology 47(2–3):247–257

    Article  CAS  PubMed  Google Scholar 

  54. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, Castiglioni F, Villani L, Magalotti C, Gibelli N (2004) Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10(17):5650–5655

    Article  CAS  PubMed  Google Scholar 

  55. Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP, Pitot HC, Alberts SR (2004) A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 22(1):23–30

    Article  CAS  PubMed  Google Scholar 

  56. Graham JS, Cassidy J (2012) Adjuvant therapy in colon cancer. Expert Rev Anticancer Ther 12(1):99–109

    Article  CAS  PubMed  Google Scholar 

  57. Gray IC (2000) Single nucleotide polymorphisms as tools in human genetics. Hum Mol Genet 9(16):2403–2408. https://doi.org/10.1093/hmg/9.16.2403

    Article  CAS  PubMed  Google Scholar 

  58. Guan Y-F, Li G-R, Wang R-J, Yi Y-T, Yang L, Jiang D, Zhang X-P, Peng Y (2012) Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin J Cancer 31(10):463–470. https://doi.org/10.5732/cjc.012.10216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, Corless CL, Li L, Li H, Sheng X, Cui C, Chi Z, Li S, Han M, Mao L, Lin X, Du N, Zhang X, Li J, Wang B, Qin S (2011) Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol Off J Am Soc Clin Oncol 29(21):2904–2909. https://doi.org/10.1200/jco.2010.33.9275

    Article  CAS  Google Scholar 

  60. Hamilton G, Rath B, Burghuber O (2015) Pharmacokinetics of crizotinib in NSCLC patients. Expert Opin Drug Metab Toxicol 11(5):835–842

    Article  CAS  PubMed  Google Scholar 

  61. Han W, Kang D, Lee JE, Park IA, Choi J-Y, Lee K-M, Bae JY, Kim S, Shin E-S, Lee JE (2005) A haplotype analysis of HER-2 gene polymorphisms: association with breast cancer risk, HER-2 protein expression in the tumor, and disease recurrence in Korea. Clin Cancer Res 11(13):4775–4778

    Article  CAS  PubMed  Google Scholar 

  62. Hedrick P (2011) Genetics of populations. Jones & Bartlett Learning

    Google Scholar 

  63. Hertz DL, Kidwell KM, Seewald NJ, Gersch CL, Desta Z, Flockhart DA, Storniolo A-M, Stearns V, Skaar TC, Hayes DF (2017) Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in postmenopausal patients with breast cancer. Pharmacogenomics J 17(6):521–527

    Article  CAS  PubMed  Google Scholar 

  64. Hideho U, Oikawa A, Nakamura A, Terasawa F, Kawagishi K, Moriizumi T (2005) Neuregulin receptor ErbB2 localization at T-tubule in cardiac and skeletal muscle. J Histochem Cytochem 53(1):87–91

    Article  Google Scholar 

  65. Honecker F, Wermann H, Mayer F, Gillis AJ, Stoop H, van Gurp RJ, Oechsle K, Steyerberg E, Hartmann JT, Dinjens WN (2009) Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J Clin Oncol 27(13):2129–2136

    Article  CAS  PubMed  Google Scholar 

  66. Hood L, Rowen L (2013) The human genome project: big science transforms biology and medicine. Genome Med 5(9):79. https://doi.org/10.1186/gm483

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hoskins JM, Carey LA, McLeod HL (2009) CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer 9(8):576–586

    Article  CAS  PubMed  Google Scholar 

  68. Hsiang Y-H, Liu LF (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Can Res 48(7):1722–1726

    CAS  Google Scholar 

  69. Hussaarts KG, Veerman GM, Jansman FG, van Gelder T, Mathijssen RH, van Leeuwen RW (2019) Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol 11:1758835918818347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Innocenti F (2008) Genomics and pharmacogenomics in anticancer drug development and clinical response. Springer Science & Business Media

    Google Scholar 

  71. Irvin WJ Jr, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC, Moore SG, Olajide OA, Graham ML, Canale ST (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29(24):3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ismail S, Essawi M (2012) Genetic polymorphism studies in humans. Middle East J Med Genet 1:57–63. https://doi.org/10.1097/01.MXE.0000415225.85003.47

    Article  Google Scholar 

  73. Iyer L, Hall D, Das S, Mortell MA, Ramírez J, Kim S, Di Rienzo A, Ratain MJ (1999) Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther 65(5):576–582

    Article  CAS  PubMed  Google Scholar 

  74. Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154(2):103–116. https://doi.org/10.5507/bp.2010.017

    Article  CAS  PubMed  Google Scholar 

  75. Jones KL, Buzdar AU (2009) Evolving novel anti-HER2 strategies. Lancet Oncol 10(12):1179–1187. https://doi.org/10.1016/s1470-2045(09)70315-8

    Article  CAS  PubMed  Google Scholar 

  76. Kalow W (2006) Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalized medicine. Pharmacogenomics J 6(3):162–165. https://doi.org/10.1038/sj.tpj.6500361

    Article  CAS  PubMed  Google Scholar 

  77. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765

    Article  CAS  PubMed  Google Scholar 

  78. Katara P (2014) Single nucleotide polymorphism and its dynamics for pharmacogenomics. Interdiscip Sci Comput Life Sci 6(2):85–92. https://doi.org/10.1007/s12539-013-0007-x

    Article  CAS  Google Scholar 

  79. Kocal GC, Baskin Y (2017) Polymorphisms in pharmacogenetics of personalized cancer therapy. InTech. https://doi.org/10.5772/intechopen.69207

  80. Kramkimel N, Thomas-Schoemann A, Sakji L, Golmard J, Noe G, Regnier-Rosencher E, Chapuis N, Maubec E, Vidal M, Avril M (2016) Vemurafenib pharmacokinetics and its correlation with efficacy and safety in outpatients with advanced BRAF-mutated melanoma. Target Oncol 11(1):59–69

    Article  CAS  PubMed  Google Scholar 

  81. Kranenburg O (2005) The KRAS oncogene: past, present, and future. Biochem Biophys Acta 1756(2):81–82

    CAS  PubMed  Google Scholar 

  82. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Jänne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, Iafrate AJ (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703. https://doi.org/10.1056/NEJMoa1006448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lainey E, Sébert M, Thépot S, Scoazec M, Bouteloup C, Leroy C, De Botton S, Galluzzi L, Fenaux P, Kroemer G (2012) Erlotinib antagonizes ABC transporters in acute myeloid leukemia. Cell Cycle 11(21):4079–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371(20):1867–1876

    Article  PubMed  Google Scholar 

  85. Laverdiere C, Chiasson S, Costea I, Moghrabi A, Krajinovic M (2002) Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood, J Am Soc Hematol 100(10):3832–3834

    Google Scholar 

  86. Lee W, Lockhart AC, Kim RB, Rothenberg ML (2005) Cancer pharmacogenomics: powerful tools in cancer chemotherapy and drug development. Oncologist 10(2):104–111. https://doi.org/10.1634/theoncologist.10-2-104

    Article  CAS  PubMed  Google Scholar 

  87. Lesko LJ, Salerno RA, Spear BB, Anderson DC, Anderson T, Brazell C, Collins J, Dorner A, Essayan D, Gomez-Mancilla B, Hackett J, Huang SM, Ide S, Killinger J, Leighton J, Mansfield E, Meyer R, Ryan SG, Schmith V, Shaw P, Sistare F, Watson M, Worobec A (2003) Pharmacogenetics and pharmacogenomics in drug development and regulatory decision making: report of the first FDA-PWG-PhRMA-DruSafe Workshop. J Clin Pharmacol 43(4):342–358. https://doi.org/10.1177/0091270003252244

    Article  CAS  PubMed  Google Scholar 

  88. Li C, Alvey C, Bello A, Wilner K, Tan W (2011) Pharmacokinetics (PK) of crizotinib (PF-02341066) in patients with advanced non-small cell lung cancer (NSCLC) and other solid tumors. J Clin Oncol 29(15_suppl):e13065–e13065

    Google Scholar 

  89. Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55(5):471–478

    Article  CAS  PubMed  Google Scholar 

  90. Lindpaintner K (1999) Genetics in drug discovery and development: challenge and promise of individualizing treatment in common complex diseases. Br Med Bull 55(2):471–491. https://doi.org/10.1258/0007142991902385

    Article  CAS  PubMed  Google Scholar 

  91. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda I (2008) The study of the effectiveness of additional reductions in cholesterol and homocysteine (SEARCH) collaborative group. SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med 359(8):789–799

    Google Scholar 

  92. Ma Q, Lu AY (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63(2):437–459

    Article  CAS  PubMed  Google Scholar 

  93. Mandola MV, Stoehlmacher J, Zhang W, Groshen S, Mimi CY, Iqbal S, Lenz H-J, Ladner RD (2004) A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenet Genomics 14(5):319–327

    Article  CAS  Google Scholar 

  94. Manne U, Srivastava RG, Srivastava S (2005) Recent advances in biomarkers for cancer diagnosis and treatment. Drug Discov Today 10(14):965–976. https://doi.org/10.1016/s1359-6446(05)03487-2

    Article  CAS  PubMed  Google Scholar 

  95. Marshall CR, Chowdhury S, Taft RJ, Lebo MS, Buchan JG, Harrison SM, Rowsey R, Klee EW, Liu P, Worthey EA, Jobanputra V, Dimmock D, Kearney HM, Bick D, Kulkarni S, Taylor SL, Belmont JW, Stavropoulos DJ, Lennon NJ, Medical Genome Initiative (2020). Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease. NPJ Genomic Med 5(1):47. https://doi.org/10.1038/s41525-020-00154-9

  96. Massarweh S, Schiff R (2007) Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res 13(7):1950–1954

    Article  CAS  PubMed  Google Scholar 

  97. Mayer F, Gillis AJ, Dinjens W, Oosterhuis JW, Bokemeyer C, Looijenga LH (2002) Microsatellite instability of germ cell tumors is associated with resistance to systemic treatment. Can Res 62(10):2758–2760

    CAS  Google Scholar 

  98. Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188

    Article  PubMed  Google Scholar 

  99. Mehta D, Uber R, Ingle T, Li C, Liu Z, Thakkar S, Ning B, Wu L, Yang J, Harris S, Zhou G, Xu J, Tong W, Lesko L, Fang H (2020) Study of pharmacogenomic information in FDA-approved drug labeling to facilitate application of precision medicine. Drug Discov Today 25(5):813–820. https://doi.org/10.1016/j.drudis.2020.01.023

  100. Meyer UA (1991) Genotype or phenotype: the definition of a pharmacogenetic polymorphism. Pharmacogenetics Genomics 1(2):66–67. https://journals.lww.com/jpharmacogenetics/Fulltext/1991/11000/Genotype_or_phenotype__the_definition_of_a.2.aspx

  101. Meyer UA (2004) Pharmacogenetics–five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 5(9):669–676

    Article  CAS  PubMed  Google Scholar 

  102. Miteva-Marcheva NN, Ivanov HY, Dimitrov DK, Stoyanova VK (2020) Application of pharmacogenetics in oncology. Biomark Res 8(1). https://doi.org/10.1186/s40364-020-00213-4

  103. Mitsudomi T (2011) Erlotinib, gefitinib, or chemotherapy for EGFR mutation-positive lung cancer? Lancet Oncol 12(8):710–711

    Article  PubMed  Google Scholar 

  104. Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U, Fidock M, Hamrén B, Johnson A, March RE, Matcham J, Mettetal J, Nicholls DJ, Platz S, Rees S, Snowden MA, Pangalos MN (2018) Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 17(3):167–181. https://doi.org/10.1038/nrd.2017.244

    Article  CAS  PubMed  Google Scholar 

  105. Moscetti L, Nelli F, Ruggeri EM (2011) Rhabdomyolysis from erlotinib: a case report. Tumori 97(3):415–416

    Article  PubMed  Google Scholar 

  106. Moszyńska A, Gebert M, Collawn JF, Bartoszewski R (2017) SNPs in microRNA target sites and their potential role in human disease. Open Biol 7(4):170019. https://doi.org/10.1098/rsob.170019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nebert DW, Jorge-Nebert L, Vesell ES (2003) Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am J Pharmacogenomics 3(6):361–370. https://doi.org/10.2165/00129785-200303060-00002

    Article  PubMed  Google Scholar 

  108. Nicolantonio FD, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, Dosso SD, Mazzucchelli L, Frattini M, Siena S, Bardelli A (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26(35):5705–5712. https://doi.org/10.1200/jco.2008.18.0786

    Article  PubMed  Google Scholar 

  109. Niu FY, Wu YL (2015) Personalized treatment strategies for non-small-cell lung cancer in Chinese patients: the role of crizotinib. Onco Targets Ther 8:999–1007. https://doi.org/10.2147/ott.s64664

    Article  PubMed  PubMed Central  Google Scholar 

  110. Oates JT, Lopez D (2018) Pharmacogenetics: an important part of drug development with a focus on its application. Int J Biomed Investig 1(2):111. https://doi.org/10.31531/2581-4745.1000111

  111. Ohdo S, Makinosumi T, Ishizaki T, Yukawa E, Higuchi S, Nakano S, Ogawa N (1997) Cell cycle-dependent chronotoxicity of irinotecan hydrochloride in mice. J Pharmacol Exp Ther 283(3):1383–1388

    CAS  PubMed  Google Scholar 

  112. Pfost DR, Boyce-Jacino MT, Grant DM (2000) A SNPshot: pharmacogenetics and the future of drug therapy. Trends Biotechnol 18(8):334–338

    Article  CAS  PubMed  Google Scholar 

  113. Poduri A, Evrony GD, Cai X, Walsh CA (2013) Somatic mutation, genomic variation, and neurological disease. Sci (N Y) 341(6141):1237758–1237758. https://doi.org/10.1126/science.1237758

  114. Przytycki PF, Singh M (2017) Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes. Genome Med 9(1):79. https://doi.org/10.1186/s13073-017-0465-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pullarkat S, Stoehlmacher J, Ghaderi V, Xiong Y, Ingles S, Sherrod A, Warren R, Tsao-Wei D, Groshen S, Lenz H (2001) Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 1(1):65–70

    Article  CAS  PubMed  Google Scholar 

  116. Rao SR, Trivedi S, Emmanuel D, Merita K, Hynniewta M (2010) DNA repetitive sequences-types, distribution and function: a review. J Cell Mol Biol 7(2):1–11

    Google Scholar 

  117. Reck M, Popat S, Reinmuth N, De Ruysscher D, Kerr K, Peters S (2014) Metastatic non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:iii27–iii39

    Google Scholar 

  118. Roden DM, Tyndale RF (2013) Genomic medicine, precision medicine, personalized medicine: what’s in a name? Clin Pharmacol Ther 94(2):169–172. https://doi.org/10.1038/clpt.2013.101

    Article  CAS  PubMed  Google Scholar 

  119. Rusling JF, Kumar CV, Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135(10):2496–2511. https://doi.org/10.1039/c0an00204f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ruwali M (2019) Pharmacogenetics and cancer treatment: progress and prospects. IntechOpen. https://doi.org/10.5772/intechopen.83424

  121. Schork NJ, Fallin D, Lanchbury JS (2000) Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 58(4):250–264. https://doi.org/10.1034/j.1399-0004.2000.580402.x

    Article  CAS  PubMed  Google Scholar 

  122. Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN, Stanbridge EJ, Lee EYP (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53–mediated mouse mammary tumors. Can Res 68(9):3243–3250

    Article  CAS  Google Scholar 

  123. Shahrokni A, Rajebi MR, Saif MW (2009) Toxicity and efficacy of 5-fluorouracil and capecitabine in a patient with TYMS gene polymorphism: a challenge or a dilemma? Clin Colorectal Cancer 8(4):231–234

    Article  CAS  PubMed  Google Scholar 

  124. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, Shapiro GI, Costa DB, Ou SH, Butaney M, Salgia R, Maki RG, Varella-Garcia M, Doebele RC, Bang YJ, Kulig K, Selaru P, Tang Y, Wilner KD, Kwak EL, Clark JW, Iafrate AJ, Camidge DR (2011) Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 12(11):1004–1012. https://doi.org/10.1016/s1470-2045(11)70232-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shitara K, Muro K, Ito S, Sawaki A, Tajika M, Kawai H, Yokota T, Takahari D, Shibata T, Ura T, Ito H, Hosono S, Kawase T, Watanabe M, Tajima K, Yatabe Y, Tanaka H, Matsuo K (2010) Folate intake along with genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase in patients with advanced gastric cancer. Cancer Epidemiol, Biomark Prev Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol 19:1311–1319. https://doi.org/10.1158/1055-9965.EPI-09-1257

    Article  CAS  Google Scholar 

  126. Shukla R (2020) Pharmacogenomics: overview, applications, and recent developments. Drug Des-Nov Adv Omics Field Appl

    Google Scholar 

  127. Siddiqui AD, Piperdi B (2010) KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg Oncol 17(4):1168–1176. https://doi.org/10.1245/s10434-009-0811-z

    Article  PubMed  Google Scholar 

  128. Sim S, Bergh J, Hellström M, Hatschek T, Xie H (2018) Pharmacogenetic impact of docetaxel on neoadjuvant treatment of breast cancer patients. Pharmacogenomics 19(16):1259–1268

    Article  CAS  PubMed  Google Scholar 

  129. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    Google Scholar 

  130. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  CAS  PubMed  Google Scholar 

  131. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA (1999) Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Seminars in oncology

    Google Scholar 

  132. Smith T, Affram K, Bulumko E, Agyare E (2018) Evaluation of in-vitro cytotoxic effect of 5-FU loaded-chitosan nanoparticles against spheroid models. J Nat Sci 4(10):e535. https://pubmed.ncbi.nlm.nih.gov/30740523

  133. Stadler ZK, Thom P, Robson ME, Weitzel JN, Kauff ND, Hurley KE, Devlin V, Gold B, Klein RJ, Offit K (2010) Genome-wide association studies of cancer. J Clin Oncol Off J Am Soc Clin Oncol 28(27):4255–4267. https://doi.org/10.1200/JCO.2009.25.7816

    Article  CAS  Google Scholar 

  134. Stocco G, Cheok MH, Crews KR, Dervieux T, French D, Pei D, Yang W, Cheng C, Pui CH, Relling MV, Evans WE (2009) Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 85(2):164–172. https://doi.org/10.1038/clpt.2008.154

    Article  CAS  PubMed  Google Scholar 

  135. Sukhumsirichart W (2018) Polymorphisms. InTech. https://doi.org/10.5772/intechopen.76728

  136. Aneesh TP (2009) Pharmacogenomics: the right drug to the right person. J Clin Med Res 1(4):191–194. https://doi.org/10.4021/jocmr2009.08.1255

  137. Tamura K, Okamoto I, Kashii T, Negoro S, Hirashima T, Kudoh S, Ichinose Y, Ebi N, Shibata K, Nishimura T (2008) Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403). Br J Cancer 98(5):907–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tan DS, Thomas GV, Garrett MD, Banerji U, de Bono JS, Kaye SB, Workman P (2009) Biomarker-driven early clinical trials in oncology: a paradigm shift in drug development. Cancer J 15(5):406–420. https://doi.org/10.1097/PPO.0b013e3181bd0445

    Article  CAS  PubMed  Google Scholar 

  139. Tarantino P, Trapani D, Morganti S, Ferraro E, Viale G, D’Amico P, Duso BA, Curigliano G (2019) Opportunities and challenges of implementing pharmacogenomics in cancer drug development. Cancer Drug Resist. https://doi.org/10.20517/cdr.2018.22

  140. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA (2018) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47(D1):D941–D947. https://doi.org/10.1093/nar/gky1015

    Article  CAS  PubMed Central  Google Scholar 

  141. Taylor ZL, Vang J, Lopez-Lopez E, Oosterom N, Mikkelsen T, Ramsey LB (2021) Systematic review of pharmacogenetic factors that influence high-dose methotrexate pharmacokinetics in pediatric malignancies. Cancers 13(11):2837. https://doi.org/10.3390/cancers13112837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Thorisson GA (2003) The SNP Consortium website: past, present and future. Nucleic Acids Res 31(1):124–127. https://doi.org/10.1093/nar/gkg052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tiseo M, Andreoli R, Gelsomino F, Mozzoni P, Azzoni C, Bartolotti M, Bortesi B, Goldoni M, Silini EM, De Palma G (2014) Correlation between erlotinib pharmacokinetics, cutaneous toxicity and clinical outcomes in patients with advanced non-small cell lung cancer (NSCLC). Lung Cancer 83(2):265–271

    Article  PubMed  Google Scholar 

  144. Torgovnick A, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front Genet 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  145. Tosi S, Reid AG (2016) The genetic basis of haematological cancers. Wiley & Sons

    Book  Google Scholar 

  146. Ulrich CM, Robien K, McLeod HL (2003) Cancer pharmacogenetics: polymorphisms, pathways and beyond. Nat Rev Cancer 3(12):912–920. https://doi.org/10.1038/nrc1233

    Article  CAS  PubMed  Google Scholar 

  147. Van Kuilenburg AB, De Abreu RA, Van Gennip AH (2003) Pharmacogenetic and clinical aspects of dihydropyrimidine dehydrogenase deficiency. Ann Clin Biochem 40(1):41–45

    Article  PubMed  Google Scholar 

  148. Vener C, Banzi R, Ambrogi F, Ferrero A, Saglio G, Pravettoni G, Sant M (2020) First-line imatinib vs second- and third-generation TKIs for chronic-phase CML: a systematic review and meta-analysis. Blood Adv 4(12):2723–2735. https://doi.org/10.1182/bloodadvances.2019001329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Walsh MF, Ritter DI, Kesserwan C, Sonkin D, Chakravarty D, Chao E, Ghosh R, Kemel Y, Wu G, Lee K, Kulkarni S, Hedges D, Mandelker D, Ceyhan-Birsoy O, Luo M, Drazer M, Zhang L, Offit K, Plon SE (2018) Integrating somatic variant data and biomarkers for germline variant classification in cancer predisposition genes. Hum Mutat 39(11):1542–1552. https://doi.org/10.1002/humu.23640

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wang D, Guo Y, Wrighton S, Cooke G, Sadee W (2011) Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 11(4):274–286

    Article  PubMed  Google Scholar 

  151. Wang Y, Shen L, Xu N, Wang J-W, Jiao S-C, Liu Z-Y, Xu J-M (2012) UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil. World J Gastroenterol WJG 18(45):6635

    Article  CAS  PubMed  Google Scholar 

  152. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Weng L, Zhang L, Peng Y, Huang RS (2013) Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy. Pharmacogenomics 14(3):315–324. https://doi.org/10.2217/pgs.12.213

    Article  CAS  PubMed  Google Scholar 

  154. Wheeler HE, Maitland ML, Dolan ME, Cox NJ, Ratain MJ (2013) Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet 14(1):23–34. https://doi.org/10.1038/nrg3352

    Article  CAS  PubMed  Google Scholar 

  155. Wielinga P, Reid G, Challa E, Van der Heijden I, Van Deemter L, De Haas M, Mol C, Kuil A, Groeneveld E, Schuetz J (2002) Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells. Mol Pharmacol 62(6):1321–1331

    Article  CAS  PubMed  Google Scholar 

  156. Wu C-P, Sim H-M, Huang Y-H, Liu Y-C, Hsiao S-H, Cheng H-W, Li Y-Q, Ambudkar SV, Hsu S-C (2013) Overexpression of ATP-binding cassette transporter ABCG2 as a potential mechanism of acquired resistance to vemurafenib in BRAF(V600E) mutant cancer cells. Biochem Pharmacol 85(3):325–334. https://doi.org/10.1016/j.bcp.2012.11.003

  157. Xie R, Mathijssen RH, Sparreboom A, Verweij J, Karlsson MO (2002) Clinical pharmacokinetics of irinotecan and its metabolites: a population analysis. J Clin Oncol 20(15):3293–3301

    Article  CAS  Google Scholar 

  158. Xiong Y, Huang B-Y, Yin J-Y (2017) Pharmacogenomics of platinum-based chemotherapy in non-small cell lung cancer: focusing on DNA repair systems. Med Oncol 34(4):48

    Article  Google Scholar 

  159. Zhou J, Zheng J, Zhang X, Zhao J, Zhu Y, Shen Q, Wang Y, Sun K, Zhang Z, Pan Z, Shen Y, Zhou J (2018) Crizotinib in patients with anaplastic lymphoma kinase-positive advanced non-small cell lung cancer versus chemotherapy as a first-line treatment. BMC Cancer 18(1):10–10. https://doi.org/10.1186/s12885-017-3720-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samra Bashir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddique, A., Bashir, S., Abbas, M. (2023). Pharmacogenetics of Anticancer Drugs: Clinical Response and Toxicity. In: Qazi, A.S., Tariq, K. (eds) Therapeutic Approaches in Cancer Treatment. Cancer Treatment and Research, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-031-27156-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27156-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27155-7

  • Online ISBN: 978-3-031-27156-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics