Skip to main content

Smart Nanocarrier-Based Cancer Therapeutics

  • Chapter
  • First Online:
Therapeutic Approaches in Cancer Treatment

Abstract

Considerable advances in the field of cancer have been made; however, these have not been translated into similar clinical progress which results in the high prevalence and increased cancer-related mortality rate worldwide. Available treatments have several challenges such as off-target side effects, non-specific long-term potential biodisruption, drug resistance, and overall inadequate response rates and high probability of recurrence. The limitations associated with independent cancer diagnosis and therapy can be minimized by an emerging interdisciplinary research field of nanotheranostics which include successful integration of diagnosis and therapy on a single agent using nanoparticles. This may offer a powerful tool in developing innovative strategies to enable “personalized medicine” for diagnosis and treatment of cancer. Nanoparticles have been proven to be powerful imaging tools or potent agents for cancer diagnosis, treatment, and prevention. The nanotheranostic provides minimally invasive in vivo visualization of drug biodistribution and accumulation at the target site with real-time monitoring of therapeutic outcome. This chapter intends to cover several important aspects and the advances in the field of nanoparticles-mediated cancer therapeutics including nanocarrier development, drug/gene delivery, intrinsically active nanoparticles, tumor microenvironment, and nanotoxicity. The chapter represents an overview of challenges associated with cancer treatment, rational for nanotechnology in cancer therapeutics, novel concepts of multifunctional nanomaterials for cancer therapy along with their classification and their clinical prospective in different cancers. A special focus is on the nanotechnology: regulatory perspective for drug development in cancer therapeutics. Obstacles hindering further development of nanomaterials-mediated cancer therapy are also discussed. In general, the objective of this chapter is to improve our perceptive in the design and development of nanotechnology for cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADME:

Absorption, Distribution, Metabolism, and Excretion

Ag:

Silver

Au:

Gold

BBB:

Blood–Brain Barrier

CDER:

Center for Drug Evaluation and Research

CNTs:

Carbon Nanotubes

CT:

Computed Tomography

DOX:

Doxorubicin

ECM:

Extracellular Matrix

EGFR:

Epidermal Growth Factor Receptor

EMEA:

European Medicine Agency

EPR:

Enhanced Permeability and Retention Effect

FDA:

Food and Drug Administration

Fe:

Iron

GLOBOCAN:

Global Cancer Incidence, Mortality and Prevalence

GNPs:

Gold Nanoparticles

HER-2:

Human Epidermal Receptor 2

IP:

Intellectual Property

MDR:

Multidrug Resistance

MMP:

Matrix Metalloproteinase

MRI:

Magnetic Resonance Imaging

MSNs:

Mesoporous Silica Nanoparticles

NCE:

New Chemical Entity

NDA:

New Drug Application

nm:

Nanometers

NPs:

Nanoparticles

OX:

Oxaliplatin

PAMAMs:

Polyamidoamine Dendrimers

PEG:

Poly (Ethylene Glycol)

PTX:

Paclitaxel

RES’:

Reticuloendothelial System

ROS:

Reactive Oxygen Species

SAR:

Structure–Activity Relationship

siRNA:

Small-Interfering Ribonucleic Acid

TME:

Tumor Microenvironment

VEGF:

Vascular Endothelial Growth Factor

WOR:

Wortmannin

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–49

    Google Scholar 

  2. Lancet T (2018) GLOBOCAN 2018: counting the toll of cancer

    Google Scholar 

  3. Jin C, Wang K, Oppong-Gyebi A, Hu J (2020) Application of nanotechnology in cancer diagnosis and therapy-a mini-review. Int J Med Sci 17(18):2964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pian Q, Wang C, Chen X, Liang J, Zhao L, Wang G et al (2014) Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues. Curr Mol Imaging (Discontin) 3(2):72–87

    Article  CAS  Google Scholar 

  5. Zhang Y, Li M, Gao X, Chen Y, Liu T (2019) Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 12(1):137

    Article  PubMed Central  PubMed  Google Scholar 

  6. Choi Y-E, Kwak J-W, Park JW (2010) Nanotechnology for early cancer detection. Sensors 10(1):428–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zhao G, Rodriguez BL (2013) Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomed 8:61

    Google Scholar 

  8. Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA (2012) Nanotechnology-based approaches in anticancer research. Int J Nanomed 7:4391

    CAS  Google Scholar 

  9. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73

    Article  CAS  PubMed  Google Scholar 

  10. Mousa SA, Bharali DJ (2011) Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers 3(3):2888–2903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  12. Hu J, Huang W, Huang S, ZhuGe Q, Jin K, Zhao Y (2016) Magnetically active Fe3O4 nanorods loaded with tissue plasminogen activator for enhanced thrombolysis. Nano Res 9(9):2652–2661

    Article  CAS  Google Scholar 

  13. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    Article  CAS  PubMed  Google Scholar 

  14. Sutradhar KB, Amin ML (2013) Nanoemulsions: increasing possibilities in drug delivery. Eur J Nanomedicine 5(2):97–110

    Article  Google Scholar 

  15. Huang L, Hu J, Huang S, Wang B, Siaw-Debrah F, Nyanzu M et al (2017) Nanomaterial applications for neurological diseases and central nervous system injury. Prog Neurobiol 157:29–48

    Article  CAS  PubMed  Google Scholar 

  16. Tran S, DeGiovanni P-J, Piel B, Rai P (2017) Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6(1):1–21

    Article  Google Scholar 

  17. Huang D, Wu K, Zhang Y, Ni Z, Zhu X, Zhu C et al (2019) Recent advances in tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Rev Adv Mater Sci 58(1):159–170

    Article  Google Scholar 

  18. Hu J, Huang S, Zhu L, Huang W, Zhao Y, Jin K et al (2018) Tissue plasminogen activator-porous magnetic microrods for targeted thrombolytic therapy after ischemic stroke. ACS Appl Mater Interfaces 10(39):32988–32997

    Article  CAS  PubMed  Google Scholar 

  19. Chaturvedi VK, Singh A, Singh VK, Singh MP (2019) Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab 20(6):416–429

    Article  CAS  PubMed  Google Scholar 

  20. Dadwal A, Baldi A, Kumar NR (2018) Nanoparticles as carriers for drug delivery in cancer. Artif Cells, Nanomedicine, Biotechnol 46(sup2):295–305

    Article  CAS  Google Scholar 

  21. Palazzolo S, Bayda S, Hadla M, Caligiuri I, Corona G, Toffoli G et al (2018) The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem 25(34):4224–4268

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Gao D-Y, Huang L (2015) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141

    Article  CAS  PubMed  Google Scholar 

  23. O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449

    Article  PubMed  Google Scholar 

  24. Cortes J, Saura C (2010) Nanoparticle albumin-bound (nab™)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur J Cancer Suppl 8(1):1–10

    Article  CAS  Google Scholar 

  25. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK (2019) Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng, C 98:1252–1276

    Article  CAS  Google Scholar 

  26. Riley R, Day E (2017) Wiley interdiscip. Rev Nanomed Nanobiotechnol 9(4):1449

    Google Scholar 

  27. Yoon HY, Selvan ST, Yang Y, Kim MJ, Yi DK, Kwon IC et al (2018) Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials 178:597–607

    Article  CAS  PubMed  Google Scholar 

  28. Zang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D (2017) Nanoparticles for tumor immunotherapy. Eur J Pharm Biopharm 115:243–256

    Article  CAS  PubMed  Google Scholar 

  29. Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R (2019) New insights into designing hybrid nanoparticles for lung cancer: diagnosis and treatment. J Control Release 295:250–267

    Article  CAS  PubMed  Google Scholar 

  30. Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J et al (2016) Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updates 27:14–29

    Article  CAS  Google Scholar 

  31. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257 Epub 2000/09/23

    Article  CAS  PubMed  Google Scholar 

  32. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  33. Carita AC, Eloy JO, Chorilli M, Lee RJ, Leonardi GR (2018) Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr Med Chem 25(5):606–635

    Article  CAS  PubMed  Google Scholar 

  34. Sykes EA, Chen J, Zheng G, Chan WC (2014) Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8(6):5696–5706

    Article  CAS  Google Scholar 

  35. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  PubMed  Google Scholar 

  36. Lim E-K, Chung BH, Chung SJ (2018) Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets 19(4):300–317

    Article  CAS  PubMed  Google Scholar 

  37. Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271(1):58–65

    Article  CAS  PubMed  Google Scholar 

  38. Shi J, Xiao Z, Kamaly N, Farokhzad OC (2011) Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 44(10):1123–1134

    Article  CAS  PubMed  Google Scholar 

  39. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20

    Article  CAS  PubMed  Google Scholar 

  40. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  CAS  PubMed  Google Scholar 

  41. Amreddy N, Muralidharan R, Babu A, Mehta M, Johnson EV, Zhao YD et al (2015) Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int J Nanomed 10:6773

    CAS  Google Scholar 

  42. Santi M, Maccari G, Mereghetti P, Voliani V, Rocchiccioli S, Ucciferri N et al (2017) Rational design of a transferrin-binding peptide sequence tailored to targeted nanoparticle internalization. Bioconjug Chem 28(2):471–480

    Article  CAS  PubMed  Google Scholar 

  43. Cui Y-n, Xu Q-x, Davoodi P, Wang D-P, Wang C-H (2017) Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin. Acta Pharmacol Sin 38(6):943–953

    Google Scholar 

  44. Soe ZC, Kwon JB, Thapa RK, Ou W, Nguyen HT, Gautam M et al (2019) Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells. Pharmaceutics 11(2):63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13(3):256–262 Epub 2009/05/08

    Article  CAS  PubMed  Google Scholar 

  46. Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A (2016) Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 142(11):2217–2229

    Article  CAS  PubMed  Google Scholar 

  47. Obaid G, Chambrier I, Cook MJ, Russell DA (2015) Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem Photobiol Sci 14(4):737–747

    Article  CAS  PubMed  Google Scholar 

  48. Sigismund S, Avanzato D, Lanzetti L (2018) Emerging functions of the EGFR in cancer. Mol Oncol 12(1):3–20

    Article  PubMed  Google Scholar 

  49. Balasubramanian S, Girija AR, Nagaoka Y, Iwai S, Suzuki M, Kizhikkilot V et al (2014) Curcumin and 5-fluorouracil-loaded, folate-and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int J Nanomed 9:437

    Google Scholar 

  50. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264 Epub 2019/03/09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Orleth A, Mamot C, Rochlitz C, Ritschard R, Alitalo K, Christofori G et al (2016) Simultaneous targeting of VEGF-receptors 2 and 3 with immunoliposomes enhances therapeutic efficacy. J Drug Target 24(1):80–89

    Article  CAS  PubMed  Google Scholar 

  52. Dienst A, Grunow A, Unruh M, Rabausch B, Nör JE, Fries JW et al (2005) Specific occlusion of murine and human tumor vasculature by VCAM-1–targeted recombinant fusion proteins. J Natl Cancer Inst 97(10):733–747

    Article  CAS  PubMed  Google Scholar 

  53. Pan H, Myerson JW, Hu L, Marsh JN, Hou K, Scott MJ et al (2013) Programmable nanoparticle functionalization for in vivo targeting. FASEB J 27(1):255–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Cun X, Chen J, Li M, He X, Tang X, Guo R et al (2019) Tumor-associated fibroblast-targeted regulation and deep tumor delivery of chemotherapeutic drugs with a multifunctional size-switchable nanoparticle. ACS Appl Mater Interfaces 11(43):39545–39559

    Article  CAS  PubMed  Google Scholar 

  55. Pelaz B, Charron G, Pfeiffer C, Zhao Y, De La Fuente JM, Liang XJ et al (2013) Interfacing engineered nanoparticles with biological systems: anticipating adverse nano–bio interactions. Small 9(9–10):1573–1584

    Article  CAS  PubMed  Google Scholar 

  56. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  57. Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  CAS  PubMed  Google Scholar 

  58. Bazak R, Houri M, El Achy S, Kamel S, Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784

    Article  CAS  PubMed  Google Scholar 

  59. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390

    Article  CAS  PubMed  Google Scholar 

  61. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29 Epub 2016/06/03

    Article  PubMed Central  PubMed  Google Scholar 

  62. Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Academic Press, San Diego

    Google Scholar 

  63. Miyata K, Christie RJ, Kataoka K (2011) Polymeric micelles for nano-scale drug delivery. React Funct Polym 71(3):227–234

    Article  CAS  Google Scholar 

  64. Mansour HM, Sohn M, Al-Ghananeem A, DeLuca PP (2010) Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci 11(9):3298–322

    Google Scholar 

  65. Kwon G, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K (1994) Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release 29(1–2):17–23

    Article  CAS  Google Scholar 

  66. Dangoor SI, Michael SK, Baabur-Cohen H, Omer L, Satchi-Fainaro R (2021) Recent progress in polymer therapeutics as nanomedicines. Handb Harnessing Biomater Nanomedicine 83–141

    Google Scholar 

  67. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol 6:286 Epub 2015/12/10

    Article  PubMed Central  PubMed  Google Scholar 

  68. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999 Epub 2015/02/14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kesharwani P, Xie L, Banerjee S, Mao G, Padhye S, Sarkar FH et al (2015) Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces 136:413–423 Epub 2015/10/07

    Article  CAS  PubMed  Google Scholar 

  70. Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Zaldívar-Lelo de Larrea G, Sosa-Ferreyra C et al (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014

    Google Scholar 

  71. Pandey P, Dahiya M (2016) A brief review on inorganic nanoparticles. J Crit Rev 3(3):18–26

    Google Scholar 

  72. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16(1):71 (Epub 2018/09/21)

    Google Scholar 

  73. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    Article  CAS  PubMed  Google Scholar 

  74. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118

    Article  CAS  Google Scholar 

  75. Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120(9):4691–4716

    Article  CAS  Google Scholar 

  76. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107

    Article  CAS  PubMed  Google Scholar 

  77. Singh A, Sahoo SK (2014) Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today 19(4):474–481

    Article  CAS  PubMed  Google Scholar 

  78. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C 60: a new form of carbon. Nature 347(6291):354–358

    Article  Google Scholar 

  79. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2):307–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wang D, Ren Y, Shao Y, Yu D, Meng L (2017) Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@ poly (N-vinyl pyrrole) for targeted synergistic chemo–photothermal cancer treatment. Bioconjug Chem 28(11):2815–2822

    Article  CAS  PubMed  Google Scholar 

  81. Karki N, Tiwari H, Pal M, Chaurasia A, Bal R, Joshi P et al (2018) Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: a comparative study. Colloids Surf, B 169:265–272

    Article  CAS  Google Scholar 

  82. Lu Y-J, Lin P-Y, Huang P-H, Kuo C-Y, Shalumon K, Chen M-Y et al (2018) Magnetic graphene oxide for dual targeted delivery of doxorubicin and photothermal therapy. Nanomaterials 8(4):193

    Article  PubMed Central  PubMed  Google Scholar 

  83. Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6(9):1306–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Davis ME, Chen Z, Shin DM (2010) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanosci Technol: Collect Rev Nat J 239–250

    Google Scholar 

  85. Jadia R, Scandore C, Rai P (2016) Nanoparticles for effective combination therapy of cancer. Int J Nanotechnol Nanomedicine 1(1)

    Google Scholar 

  86. Kumari P, Ghosh B, Biswas S (2015) Nanocarriers for cancer-targeted drug delivery. J Drug Target 24:1–13

    Google Scholar 

  87. Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8(9):1509–1528 Epub 2013/08/07

    Article  CAS  PubMed  Google Scholar 

  88. Guimarães D, Cavaco-Paulo A, Nogueira E (2021) Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 120571

    Google Scholar 

  89. Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE et al (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30(20):3466–3475

    Article  CAS  PubMed  Google Scholar 

  90. Chen J, Jiang H, Wu Y, Li Y, Gao Y (2015) A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation. Drug Des Dev Ther 9:2265

    CAS  Google Scholar 

  91. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Article  CAS  PubMed  Google Scholar 

  93. Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 68(3):701–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Wang T, Yang S, Mei LA, Parmar CK, Gillespie JW, Praveen KP et al (2014) Paclitaxel-loaded PEG-PE–based micellar nanopreparations targeted with tumor-specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors. Mol Cancer Ther 13(12):2864–2875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Bae Y, Diezi TA, Zhao A, Kwon GS (2007) Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release 122(3):324–330

    Article  CAS  PubMed  Google Scholar 

  96. Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M et al (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26

    Article  CAS  PubMed  Google Scholar 

  97. Shrestha B, Wang L, Brey EM, Uribe GR, Tang L (2021) Smart nanoparticles for chemo-based combinational therapy. Pharmaceutics 13(6):853

    Article  CAS  PubMed  Google Scholar 

  98. Hsiao S-M, Peng B-Y, Tseng YS, Liu H-T, Chen C-H, Lin H-M (2017) Preparation and characterization of multifunctional mesoporous silica nanoparticles for dual magnetic resonance and fluorescence imaging in targeted cancer therapy. Microporous Mesoporous Mater 250:210–220

    Article  CAS  Google Scholar 

  99. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B et al (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132(13):4678–4684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Tomuleasa C, Soritau O, Orza A, Dudea M, Petrushev B, Mosteanu O et al (2012) Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J Gastrointest Liver Dis 21(2)

    Google Scholar 

  101. Widder KJ, Senyei AE, Ranney DF (1979) Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol 16:213–271

    Article  CAS  Google Scholar 

  102. Li P, Yan Y, Chen B, Zhang P, Wang S, Zhou J et al (2018) Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy. Biomater Sci 6(4):877–884

    Article  CAS  PubMed  Google Scholar 

  103. Fernandes C, Suares D, Yergeri MC (2018) Tumor microenvironment targeted nanotherapy. Front Pharmacol 9:1230 Epub 2018/11/16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Chen Y, Feng S, Liu W, Yuan Z, Yin P, Gao F (2017) Vitamin E succinate-grafted-chitosan oligosaccharide/RGD-conjugated TPGS mixed micelles loaded with paclitaxel for U87MG tumor therapy. Mol Pharm 14(4):1190–1203

    Google Scholar 

  105. Zhao G, Long L, Zhang L, Peng M, Cui T, Wen X et al (2017) Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep 7(1):3383 (Epub 2017/06/15)

    Google Scholar 

  106. Dalela M, Shrivastav TG, Kharbanda S, Singh H (2015) pH-sensitive biocompatible nanoparticles of paclitaxel-conjugated poly(styrene-co-maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice. ACS Appl Mater Interfaces 7(48):26530–26548 Epub 2015/11/04

    Article  CAS  PubMed  Google Scholar 

  107. Xu X, Wu J, Liu Y, Yu M, Zhao L, Zhu X et al (2016) Ultra-pH-Responsive and Tumor-Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Anti-Cancer Efficacy. Angew Chem Int Ed Engl 55(25):7091–7094 Epub 2016/05/04

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Min KH, Kim JH, Bae SM, Shin H, Kim MS, Park S et al (2010) Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy. J Control Release Off J Control Release Soc 144(2):259–266 Epub 2010/03/02

    Article  CAS  Google Scholar 

  109. Khawar IA, Kim JH, Kuh H-J (2015) Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201:78–89

    Article  CAS  PubMed  Google Scholar 

  110. Tong R, Langer R (2015) Nanomedicines targeting the tumor microenvironment. Cancer J 21(4):314–321

    Article  CAS  PubMed  Google Scholar 

  111. Omidi Y, Barar J (2014) Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. BioImpacts BI 4(2):55

    Google Scholar 

  112. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572

    Article  CAS  PubMed  Google Scholar 

  113. Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L, Adini I et al (2008) An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol 26(7):799–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshevlotsky EM et al (2016) Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res 22(12):2848–2854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Kanapathipillai M, Mammoto A, Mammoto T, Kang JH, Jiang E, Ghosh K et al (2012) Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix. Nano Lett 12(6):3213–3217

    Article  CAS  PubMed  Google Scholar 

  116. Zhang B, Shen S, Liao Z, Shi W, Wang Y, Zhao J et al (2014) Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials 35(13):4088–4098

    Article  CAS  PubMed  Google Scholar 

  117. Nii A, Fan D, Fidler IJ (1991) Cytotoxic potential of liposomes containing tumor necrosis factor-alpha against sensitive and resistant target cells. J Immunother Off J Soc Biol Ther 10(1):13–19

    Article  CAS  Google Scholar 

  118. ten Hagen TL, Seynhaeve AL, van Tiel ST, Ruiter DJ, Eggermont AM (2002) Pegylated liposomal tumor necrosis factor-α results in reduced toxicity and synergistic antitumor activity after systemic administration in combination with liposomal doxorubicin (Doxil®) in soft tissue sarcoma-bearing rats. Int J Cancer 97(1):115–120

    Article  PubMed  Google Scholar 

  119. Costa B, Amorim I, Gärtner F, Vale N (2020) Understanding breast cancer: From conventional therapies to repurposed drugs. Eur J Pharm Sci 151:105401

    Article  CAS  PubMed  Google Scholar 

  120. Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C (2018) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine Nanotechnol, Biol Med 14(1):1–12

    Google Scholar 

  121. Abramenko NB, Demidova TB, Abkhalimov EV, Ershov BG, Krysanov EY, Kustov LM (2018) Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 347:89–94

    Article  CAS  PubMed  Google Scholar 

  122. Zhou H, Gong X, Lin H, Chen H, Huang D, Li D et al (2018) Gold nanoparticles impair autophagy flux through shape-dependent endocytosis and lysosomal dysfunction. J Mater Chem B 6(48):8127–8136

    Article  CAS  PubMed  Google Scholar 

  123. Steckiewicz KP, Barcinska E, Malankowska A, Zauszkiewicz-Pawlak A, Nowaczyk G, Zaleska-Medynska A et al (2019) Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J Mater Sci Mater Med 30(2):22

    Google Scholar 

  124. Lee JH, Ju JE, Kim BI, Pak PJ, Choi EK, Lee HS et al (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33(12):2759–2766

    Article  CAS  PubMed  Google Scholar 

  125. Lippmann M (1990) Effects of fiber characteristics on lung deposition, retention, and disease. Environ Health Perspect 88:311–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Li L, Liu T, Fu C, Tan L, Meng X, Liu H (2015) Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine Nanotechnol, Biol Med 11(8):1915–24

    Google Scholar 

  127. Andersson PO, Lejon C, Ekstrand-Hammarström B, Akfur C, Ahlinder L, Bucht A et al (2011) Polymorph-and size-dependent uptake and toxicity of TiO2 nanoparticles in living lung epithelial cells. Small 7(4):514–523

    Article  CAS  PubMed  Google Scholar 

  128. Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A et al (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 9(1):e85835

    Article  PubMed Central  PubMed  Google Scholar 

  129. Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E (2012) The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232

    Article  CAS  PubMed  Google Scholar 

  130. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S et al (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131

    Article  CAS  PubMed  Google Scholar 

  131. Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL (2019) Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res 52(6):1632–1642

    Article  CAS  PubMed  Google Scholar 

  132. Egbuna C, Parmar VK, Jeevanandam J, Ezzat SM, Patrick-Iwuanyanwu KC, Adetunji CO et al (2021) Toxicity of nanoparticles in biomedical application: nanotoxicology. J Toxicol 2021

    Google Scholar 

  133. Kheirallah DAM, El-Samad LM, Abdel-Moneim AM (2021) DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ 753:141743

    Article  CAS  PubMed  Google Scholar 

  134. Hou J, Liu H, Zhang S, Liu X, Hayat T, Alsaedi A et al (2019) Mechanism of toxic effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio). Chemosphere 229:206–213

    Article  CAS  PubMed  Google Scholar 

  135. Kovvuru P, Mancilla PE, Shirode AB, Murray TM, Begley TJ, Reliene R (2015) Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues. Nanotoxicology 9(2):162–171

    Article  CAS  PubMed  Google Scholar 

  136. Ahamed M, Akhtar MJ, Khan MM, Alrokayan SA, Alhadlaq HA (2019) Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi2O3) nanoparticles in human breast cancer (MCF-7) cells. Chemosphere 216:823–831

    Article  CAS  PubMed  Google Scholar 

  137. Ungor D, Dékány I, Csapó E (2019) Reduction of tetrachloroaurate(III) ions with bioligands: role of the thiol and amine functional groups on the structure and optical features of gold nanohybrid systems. Nanomater (Basel, Switz) 9(9) (Epub 2019/09/01)

    Google Scholar 

  138. Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Sivagurunathan P, Saratale GD, Dung TNB et al (2017) Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep (Amst) 14:1–7 Epub 2017/05/02

    Article  PubMed  Google Scholar 

  139. Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8(6):904–917 Epub 2014/08/27

    Article  CAS  PubMed  Google Scholar 

  140. Długosz O, Szostak K. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials 13(2)

    Google Scholar 

  141. Caster JM, Patel AN, Zhang T, Wang A (2017) Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(1) (Epub 2016/06/18)

    Google Scholar 

  142. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48 Epub 2012/10/06

    Article  CAS  PubMed  Google Scholar 

  143. Tejada-Berges T, Granai CO, Gordinier M, Gajewski W (2002) Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev Anticancer Ther 2(2):143–150 Epub 2002/07/13

    Article  CAS  PubMed  Google Scholar 

  144. Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA (2017) Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm 526(1–2):474–495

    Article  CAS  Google Scholar 

  145. Cirstoiu-Hapca A, Buchegger F, Bossy L, Kosinski M, Gurny R, Delie F (2009) Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Eur J Pharm Sci 38(3):230–237

    Article  CAS  PubMed  Google Scholar 

  146. Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30(5):859–866

    Article  CAS  PubMed  Google Scholar 

  147. Kos J, Obermajer N, Doljak B, Kocbek P, Kristl J (2009) Inactivation of harmful tumour-associated proteolysis by nanoparticulate system. Int J Pharm 381(2):106–112

    Article  CAS  PubMed  Google Scholar 

  148. Mukai H, Kogawa T, Matsubara N, Naito Y, Sasaki M, Hosono A (2017) A first-in-human phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors. Invest New Drugs 35(3):307–314

    Article  CAS  PubMed  Google Scholar 

  149. Brewer E, Coleman J, Lowman A (2011) Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater 2011

    Google Scholar 

  150. Mahner S, Meier W, Du Bois A, Brown C, Lorusso D, Dell’Anna T et al (2015) Carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in very platinum-sensitive ovarian cancer patients: results from a subset analysis of the CALYPSO phase III trial. Eur J Cancer 51(3):352–358

    Article  CAS  PubMed  Google Scholar 

  151. Lu B, Sun L, Yan X, Ai Z, Xu J (2015) Intratumoral chemotherapy with paclitaxel liposome combined with systemic chemotherapy: a new method of neoadjuvant chemotherapy for stage III unresectable non-small cell lung cancer. Med Oncol 32(1):345

    Article  PubMed  Google Scholar 

  152. Cornely OA, Leguay T, Maertens J, Vehreschild MJ, Anagnostopoulos A, Castagnola C et al (2017) Randomized comparison of liposomal amphotericin B versus placebo to prevent invasive mycoses in acute lymphoblastic leukaemia. J Antimicrob Chemother 72(8):2359–2367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK et al (2018) CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol 36(26):2684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Evans TJ, Dean E, Molife LR, Lopez J, Ranson M, El-Khouly F et al (2019) Phase 1 dose-finding and pharmacokinetic study of eribulin-liposomal formulation in patients with solid tumours. Br J Cancer 120(4):379–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Gargett T, Abbas MN, Rolan P, Price JD, Gosling KM, Ferrante A et al (2018) Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immunother 67(9):1461–1472

    Article  CAS  PubMed  Google Scholar 

  156. Taratula O, Garbuzenko OB, Kirkpatrick P, Pandya I, Savla R, Pozharov VP et al (2009) Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release 140(3):284–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Salem DS, Sliem MA, El-Sesy M, Shouman SA, Badr Y (2018) Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. J Photochem Photobiol, B 182:92–99

    Article  CAS  PubMed  Google Scholar 

  158. Avedian N, Zaaeri F, Daryasari MP, Javar HA, Khoobi M (2018) pH-sensitive biocompatible mesoporous magnetic nanoparticles labeled with folic acid as an efficient carrier for controlled anticancer drug delivery. J Drug Deliv Sci Technol 44:323–332

    Article  CAS  Google Scholar 

  159. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed Central  PubMed  Google Scholar 

  160. Donaldson K, Tran CL (2002) Inflammation caused by particles and fibers. Inhal Toxicol 14(1):5–27

    Article  CAS  PubMed  Google Scholar 

  161. Holsapple MP, Lehman-McKeeman LD (2005) Forum series: research strategies for safety evaluation of nanomaterials. Oxford University Press

    Google Scholar 

  162. Sadrieh N, Miller T (2006) Nanotechnology: regulatory perspective for drug development in cancer therapeutics. CRC Press, Nanotechnology for cancer therapy, pp 139–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzma Azeem Awan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awan, U.A., Naeem, M., Saeed, R.F., Mumtaz, S., Akhtar, N. (2023). Smart Nanocarrier-Based Cancer Therapeutics. In: Qazi, A.S., Tariq, K. (eds) Therapeutic Approaches in Cancer Treatment. Cancer Treatment and Research, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-031-27156-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27156-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27155-7

  • Online ISBN: 978-3-031-27156-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics