Skip to main content

Biofertilizers to Improve Soil Health and Crop Yields

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 61

Abstract

Current soil management practices depend highly on mineral fertilizers, which are costly and unsustainable. Alternatively, eco-friendly strategies such as applications of plant growth-promoting rhizobacteria, endo-mycorrhizal fungi, cyanobacteria, and other beneficial microorganisms, have recently emerged to enhance nutrient uptake and plant tolerance to abiotic stress. These biofertilizers have thus become vital in agriculture due to their potential to improve food safety. Here we review the role of biofertilizers in improving soil health and sustainable agriculture production. Applying biofertilizers promotes plant water and uptake, growth, and tolerance to abiotic and biotic factors. We explain how biofertilizers control crop functional attributes such as growth and yield of plants, nutrient characteristics, plant defensive performance and protection. Here we focus the activation of growths and defense-related genes in the signaling network of cellular pathways, causing cellular response and thus crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PGPR:

Plant growth promoting rhizobacteria

AARI:

Ayub Agricultural Research Institute, Faisalabad, Pakistan

NIAB:

Nuclear Institute of Agriculture and Biology, Faisalabad, Pakistan

ACC-deaminase:

Amino cyclopropane-carboxylic acid

NIBGE:

National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan

NARC:

National Agricultural Research Centre, Islamabad, Pakistan

ISES:

Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan

References

  • Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sust Energ Rev 90:316–335. https://doi.org/10.1016/j.rser.2018.03.067

    Article  Google Scholar 

  • Agrawal A (1995) Dismantling the divide between indigenous and scientific knowledge. Dev Chang 26(3):413–439. https://doi.org/10.1111/j.1467-7660.1995.tb00560.x

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589. https://doi.org/10.1139/w11-04

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Khan I, Muhammad D, Mussarat M, Shafi MI (2019) Effect of phosphorus sources and their levels on spring maize. Biol Sci-PJSIR 62(1):8–14

    CAS  Google Scholar 

  • Akbar H, Timothy JK, Jagadish T, M. Golam M, Apurbo KC, Muhammad F, Rajan B, Fahad S, Hasanuzzaman M (2020) Agricultural land degradation: processes and problems undermining future food security. in: Fahad S, Hasanuzzaman M, Alam M, Ullah H,Saeed M, Khan AK, Adnan M (Ed.), Environment, climate, plant and vegetation growth. Springer Publ Ltd, Cham. pp 17–62. https://doi.org/10.1007/978-3-030-49732-3

  • Alam S, Fatima A, Butt MS (2007) Sustainable development in Pakistan in the context of energy consumption demand and environmental degradation. J Asian Econ 18(5):825–837. https://doi.org/10.1016/j.asieco.2007.07.005

    Article  Google Scholar 

  • Ali M, Ali A, Tahir M, Yaseen M (2012) Growth and yield response of hybrid maize through integrated phosphorus management. Pak J Life Soc Sci 10(1):59–66

    Google Scholar 

  • Ali I, Ullah S, He L, Zhao Q, Iqbal A, Wei S, Shah T, Ali N, Bo Y, Adnan M (2020) Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment. PeerJ 8:e10311. https://doi.org/10.7717/peerj.10311

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali I, Adnan M, Ullah S, Zhao Q, Iqbal A, He L, Cheng F, Muhammad I, Ahmad S, Wei S (2021) Biochar combined with nitrogen fertilizer: a practical approach for increasing the biomass digestibility and yield of rice and promoting food and energy security. Biofuels Bioprod Biorefin 16:1304–1318. https://doi.org/10.1002/bbb.2334

    Article  CAS  Google Scholar 

  • Amanullah FS (ed) (2017) Rice – technology and production. IntechOpen, Croatia. https://doi.org/10.5772/64480

    Book  Google Scholar 

  • Amanullah FS (ed) (2018a) Corn – production and human Health in changing climate. IntechOpen, London. https://doi.org/10.5772/intechopen.74074

    Book  Google Scholar 

  • Amanullah FS (ed) (2018b) Nitrogen in agriculture – updates. IntechOpen, Croatia. https://doi.org/10.5772/65846

    Book  Google Scholar 

  • Amanullah SK, Imran HAK, Muhammad A, Abdel RA, Muhammad A, Fahad S, Azizullah S, Brajendra P (2020) Effects of climate change on irrigation water quality. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan AK, Adnan M (eds) Environment, climate, plant and vegetation growth. Springer Publ Ltd, Cham, pp 123–132. https://doi.org/10.1007/978-3-030-49732-3

    Chapter  Google Scholar 

  • Amanullah MI, Haider N, Shah K, Manzoor A, Asim M, Saif U, Izhar A, Fahad S, Adnan M et al (2021) Integrated foliar nutrients application improve wheat (Triticum Aestivum L.) productivity under calcareous soils in drylands. Commun Soil Sci Plant Anal 52(21):2748–2766. https://doi.org/10.1080/00103624.2021.1956521

    Article  CAS  Google Scholar 

  • Amir M, Muhammad A, Allah B, Sevgi Ç, Haroon ZK, Muhammad A, Emre A (2020) Bio fortification under climate change: the fight between quality and quantity. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan AK, Adnan M (eds) Environment, climate, plant and vegetation growth. Springer Publ Ltd, Cham, pp 173–228. https://doi.org/10.1007/978-3-030-49732-3

    Chapter  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18(5):611–620. https://doi.org/10.1016/S1002-0160(08)60055-7

    Article  Google Scholar 

  • Awais M, Tariq M, Ali A, Ali Q, Khan A, Tabassum B, Nasir IA, Husnain T (2017) Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatal Agric Biotechnol 11:312–321. https://doi.org/10.1016/j.bcab.2017.07.018

    Article  Google Scholar 

  • Bado VB, Bationo A (2018) Integrated management of soil fertility and land resources in Sub-Saharan Africa: involving local communities. Adv Agron 150:1–33. https://doi.org/10.1016/bs.agron.2018.02.001

    Article  Google Scholar 

  • Barrera-Bassols N, Zinck JA (2003) Ethnopedology: a worldwide view on the soil knowledge of local people. Geoderma 111(3–4):171–195. https://doi.org/10.1016/S0016-7061(02)00263-X

    Article  Google Scholar 

  • Barrios E, Delve RJ, Bekunda M, Mowo J, Agunda J, Ramisch J, Trejo M, Thomas RJ (2006) Indicators of soil quality: a South–South development of a methodological guide for linking local and technical knowledge. Geoderma 135:248–259. https://doi.org/10.1016/j.geoderma.2005.12.007

    Article  Google Scholar 

  • Belachew T, Abera Y (2010) Assessment of soil fertility status with depth in wheat growing highlands of Southeast Ethiopia. World J Agric Sci 6(5):525–531

    CAS  Google Scholar 

  • Belhadi D, De Lajudie P, Ramdani N, Le Roux C, Boulila F, Tisseyre P, Boulila A, Benguedouar A, Kaci Y, Laguerre G (2018) Vicia faba L. in the Bejaia region of Algeria is nodulated by rhizobium leguminosarum sv. viciae, Rhizobium laguerreae and two new genospecies. Syst Appl Microbiol 41(2):122–130. https://doi.org/10.1016/j.syapm.2017.10.004

    Article  PubMed  Google Scholar 

  • Berazneva J, McBride L, Sheahan M, Güereña D (2018) Empirical assessment of subjective and objective soil fertility metrics in East Africa: implications for researchers and policy makers. World Dev 105:367–382. https://doi.org/10.1016/j.worlddev.2017.12.009

    Article  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130. https://doi.org/10.1016/j.soilbio.2016.08.020

    Article  CAS  Google Scholar 

  • Chen Y, Rekha P, Arun A, Shen F, Lai W-A, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34(1):33–41. https://doi.org/10.1016/j.apsoil.2005.12.002

    Article  Google Scholar 

  • Chen J, Liu Y-Q, Yan X-W, Wei G-H, Zhang J-H, Fang L-C (2018) Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. Ecotoxicol Environ Saf 162:312–323. https://doi.org/10.1016/j.ecoenv.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  • Chukwuka K (2009) Soil fertility restoration techniques in sub-Saharan Africa using organic resources. Afr J Agric Res 4(3):144–150

    Google Scholar 

  • Damir O, Mladen P, Božidar S, Srñan N (2011) Cultivation of the bacterium Azotobacter chroococcum for preparation of biofertilizers. Afr J Biotechnol 10(16):3104–3111. https://doi.org/10.5897/AJB10.1086

    Article  Google Scholar 

  • Danso S (1992) Twenty years of biological nitrogen fixation research. In: Biolgical nitrogen fixation and sustainability of tropical agriculture, vol 4, p 3. https://doi.org/10.1007/978-94-017-0910-1_10

  • Emrooz HBM, Maleki M, Rahmani A (2018) Azolla-derived hierarchical nanoporous carbons: from environmental concerns to industrial opportunities. J Taiwan Inst Chem Eng 91:281–290. https://doi.org/10.1016/j.jtice.2018.05.027

    Article  CAS  Google Scholar 

  • Farhana G, Ishfaq A, Muhammad A, Dawood J, Fahad S, Xiuling L, Depeng W, Muhammad F, Muhammad F, Syed AS (2020) Use of crop growth model to simulate the impact of climate change on yield of various wheat cultivars under different agro-environmental conditions in Khyber Pakhtunkhwa, Pakistan. Arab J Geosci 13:112. https://doi.org/10.1007/s12517-020-5118-1

    Article  Google Scholar 

  • Farhat A, Hafiz MH, Wajid I, Aitazaz AF, Hafiz FB, Zahida Z, Fahad S, Wajid F, Artemi C (2020) A review of soil carbon dynamics resulting from agricultural practices. J Environ Manag 268(2020):110319

    Google Scholar 

  • Farhat UK, Adnan AK, Kai L, Xuexuan X, Muhammad A, Fahad S, Rafiq A, Mushtaq AK, Taufiq N, Faisal Z (2022) Influences of long-term crop cultivation and fertilizer management on soil aggregates stability and fertility in the loess plateau. Northern China J Soil Sci Plant Nutri 22:1446–1457. https://doi.org/10.1007/s42729-021-00744-1

  • Friedrich S, Platonova N, Karavaiko G, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11(3):187–196. https://doi.org/10.1002/abio.370110302

    Article  CAS  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8(1):1–12. https://doi.org/10.1186/s13568-018-0608-1

    Article  CAS  Google Scholar 

  • Funga A, Ojiewo CO, Turoop L, Mwangi GS (2016) Symbiotic effectiveness of elite rhizobia strains nodulating desi type chickpea (Cicer arietinum L.) varieties. J Plant Scis 4(04):88–94. https://doi.org/10.11648/j.jps.20160404.15

    Article  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643. https://doi.org/10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  • Ghasem S, Morteza AS, Maryam T (2014) Effect of organic fertilizers on cucumber (Cucumis sativus) yield. Int J Agric Crop Sci 7(11):808

    Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crop Prod 76:41–48. https://doi.org/10.1016/j.indcrop.2015.06.017

    Article  CAS  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):096–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  • Guzman CD, Tilahun SA, Dagnew DC, Zegeye AD, Yitaferu B, Kay RW, Steenhuis TS (2018) Developing soil conservation strategies with technical and community knowledge in a degrading sub-humid mountainous landscape. Land Degrad Dev 29(3):749–764. https://doi.org/10.1002/ldr.2733

    Article  Google Scholar 

  • Hafeez F, Ahmad T, Hameed S, Danso S, Malik K (1998) Comparison of direct and indirect methods of measuring nitrogen fixation in field grown chickpea genotypes. Pak J Bot 30(2):199–208

    Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen iiber die Stickstoffnahrung der Gramineen und Leguminosen. Beilageheft zu der Ztschr Ver Riibenzucker-Industrie Deutschen Reichs

    Google Scholar 

  • Hesham FA, Fahad S (2020) Melatonin application enhances biochar efficiency for drought tolerance in maize varieties: modifications in physio-biochemical machinery. Agron J 112(4):1–22. https://doi.org/10.1002/agj2.20263

    Article  CAS  Google Scholar 

  • Hussain M, Mehboob I, Zahir Z, Naveed M, Asghar H (2009) Potential of rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ 28(1):49–55

    Google Scholar 

  • Ingram J, Fry P, Mathieu A (2010) Revealing different understandings of soil held by scientists and farmers in the context of soil protection and management. Land Use Policy 27(1):51–60. https://doi.org/10.1016/j.landusepol.2008.07.005

    Article  Google Scholar 

  • Ingram J, Dwyer J, Gaskell P, Mills J, de Wolf P (2018) Reconceptualising translation in agricultural innovation: a co-translation approach to bring research knowledge and practice closer together. Land Use Policy 70:38–51. https://doi.org/10.1016/j.landusepol.2017.10.013

    Article  Google Scholar 

  • Iqbal A, He L, Khan A, Wei S, Akhtar K, Ali I, Ullah S, Munsif F, Zhao Q, Jiang L (2019) Organic manure coupled with inorganic fertilizer: an approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy 9(10):651. https://doi.org/10.3390/agronomy9100651

    Article  CAS  Google Scholar 

  • Iqbal A, He L, Ali I, Ullah S, Khan A, Khan A, Akhtar K, Wei S, Zhao Q, Zhang J (2020) Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS One 15(10):e0238934. https://doi.org/10.1371/journal.pone.0238934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal A, He L, Ali I, Ullah S, Khan A, Akhtar K, Wei S, Fahad S, Khan R, Jiang L (2021a) Co-incorporation of manure and inorganic fertilizer improves leaf physiological traits, rice production and soil functionality in a paddy field. Sci Rep 11(1):1–16. https://doi.org/10.1038/s41598-021-96497-z

    Article  CAS  Google Scholar 

  • Iqbal A, He L, McBride SG, Ali I, Akhtar K, Khan R, Zaman M, We S, Guo Z, Jiang L (2021b) Manure applications combined with chemical fertilizer improves soil functionality. Microbial Biomass and Rice Production in a Paddy Field 114:1431–1446. https://doi.org/10.1002/agj2.20990

    Article  CAS  Google Scholar 

  • Iqbal A, Khan A, Green SJ, Ali I, He L, Zeeshan M, Luo Y, Wu X, Wei S, Jiang L (2021c) Long-term straw mulching in a no-till field improves soil functionality and rice yield by increasing soil enzymatic activity and chemical properties in paddy soils. J Plant Nutr Soil Sci 184(6):622–634. https://doi.org/10.1002/jpln.202100089

    Article  CAS  Google Scholar 

  • Iqra M, Amna B, Shakeel I, Fatima K, Sehrish L, Hamza A, Fahad S (2020) Carbon cycle in response to global warming. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan AK, Adnan M (eds) Environment, climate, plant and vegetation growth. Springer Publ Ltd, Cham, pp 1–16. https://doi.org/10.1007/978-3-030-49732-3

    Chapter  Google Scholar 

  • Isfahani FM, Besharati H (2012) Effect of biofertilizers on yield and yield components of cucumber. J Biol Earth Sci 2(2):B83–B92

    Google Scholar 

  • Itelima J, Bang W, Onyimba I, Sila M, Egbere O (2018) Bio-fertilizers as key player in enhancing soil fertility and crop productivity: a review. Direct Res J Agric Food Sci 6(3):73–83. https://doi.org/10.26765/DRJAFS.2018.4815

    Article  Google Scholar 

  • Izhar Shafi M, Adnan M, Fahad S, Wahid F, Khan A, Yue Z, Danish S, Zafar-ul-Hye M, Brtnicky M, Datta R (2020) Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy 10(9):1224. https://doi.org/10.3390/agronomy10091224

    Article  CAS  Google Scholar 

  • Jilani MS, Bakar A, Waseem K, Kiran M (2009) Effect of different levels of NPK on the growth and yield of cucumber (Cucumis sativus) under the plastic tunnel. J Agric Soc Sci 5(3):99–101

    Google Scholar 

  • Kanaujia S, Daniel M (2016) Integrated nutrient management for quality production and economics of cucumber on acid alfisol of Nagaland. Annals of Plant and Soil Research 18(4):375–380

    Google Scholar 

  • Karlen DL, Ditzler CA, Andrews SS (2003) Soil quality: why and how? Geoderma 114(3–4):145–156. https://doi.org/10.1016/S0016-7061(03)00039-9

    Article  CAS  Google Scholar 

  • Kaur P, Purewal SS (2019) Biofertilizers and their role in sustainable agriculture. In: Biofertilizers for sustainable agriculture and environment, Springer, pp. 285–300. https://doi.org/10.1007/978-3-030-18933-4_12

  • Kaur P, Dhull SB, Sandhu KS, Salar RK, Purewal SS (2018a) Tulsi (Ocimum tenuiflorum) seeds: in vitro DNA damage protection, bioactive compounds and antioxidant potential. J Food Meas Charact 12(3):1530–1538. https://doi.org/10.1007/s11694-018-9768-6

    Article  Google Scholar 

  • Kaur R, Kaur M, Purewal SS (2018b) Effect of incorporation of flaxseed to wheat rusks: antioxidant, nutritional, sensory characteristics, and in vitro DNA damage protection activity. J Food Process Preserv 42(4):e13585. https://doi.org/10.1111/jfpp.13585

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Microbial strategies for crop improvement, Springer, pp. 133–160. https://doi.org/10.1007/978-3-642-01979-1_7

  • Khan A, Ahmad D, Shah Hashmi H (2013) Review of available knowledge on land degradation in Pakistan

    Google Scholar 

  • Khan M, Ullah F, Zainub B, Khan M, Zeb A, Ahmad K, Arshad R (2017) Effects of poultry manure levels on growth and yield of cucumber cultivars. Sci Int(Lahore) 29(6):1381–1386

    CAS  Google Scholar 

  • Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G (2020) Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J Environ Manag 273:111118. https://doi.org/10.1016/j.jenvman.2020.111118

    Article  CAS  Google Scholar 

  • Kumar M, Kathayat K, Singh SK, Singh L, Singh T (2018) Influence of bio-fertilizers application on growth, yield and quality attributes of cucumber (Cucumis sativus L.): a review. Plant Arch 18(2):2329–2334

    Google Scholar 

  • Kumar R, Kumar R, Prakash O (2019) Chapter-5 The impact of chemical fertilizers on our environment and ecosystem. Chief Editor, pp 35–69

    Google Scholar 

  • Kumari P, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay R (2018) Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatal Agric Biotechnol 16:163–171. https://doi.org/10.1016/j.bcab.2018.07.030

    Article  Google Scholar 

  • Lal R (2018) Managing agricultural soils of Pakistan for food and climate. Soil Environ 37(1):1–10. https://doi.org/10.25252/se/18/61527

    Article  MathSciNet  CAS  Google Scholar 

  • Liu K, Harrison MT , Yan H, Liu DL, Meinke H, Hoogenboom G, Wang B, Peng B, Guan K, Jaegermeyr J, Wang E, Zhang F, Yin X, Archontoulis S, Nie L, Badea A, Man J, Wallach D, Zhao J, Benjumea AB, Fahad S et al. (2023) Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat Commun 1(4):765.

    Google Scholar 

  • Llorente BE, Alasia MA, Larraburu EE (2016) Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. New Biotechnol 33(1):32–40. https://doi.org/10.1016/j.nbt.2015.07.006

    Article  CAS  Google Scholar 

  • Luo Y, Iqbal A, He L, Zhao Q, Wei S, Ali I, Ullah S, Yan B, Jiang L (2020) Long-term no-tillage and straw retention management enhances soil bacterial community diversity and soil properties in southern China. Agronomy 10(9):1233. https://doi.org/10.3390/agronomy10091233

    Article  CAS  Google Scholar 

  • Mahanta D, Rai R, Dhar S, Varghese E, Raja A, Purakayastha T (2018) Modification of root properties with phosphate solubilizing bacteria and arbuscular mycorrhiza to reduce rock phosphate application in soybean-wheat cropping system. Ecol Eng 111:31–43. https://doi.org/10.1016/j.ecoleng.2017.11.008

    Article  Google Scholar 

  • Mahar A, Amjad A, Altaf HL, Fazli W, Ronghua L, Muhammad A, Fahad S, Muhammad A, Rafiullah IAK, Zengqiang Z (2020) Promising Technologies for cd-Contaminated Soils: drawbacks and possibilities. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan AK, Adnan M (eds) Environment, climate, plant and vegetation growth. Springer Publ Ltd, Cham, pp 63–92. https://doi.org/10.1007/978-3-030-49732-3

    Chapter  Google Scholar 

  • Mahmood Ul H, Tassaduq R, Chandni I, Adnan A, Muhammad A, Muhammad MA, Muhammad H-u-R, Mehmood AN, Alam S, Fahad S (2021) Linking plants functioning to adaptive responses under heat stress conditions: a mechanistic review. J Plant Growth Regul 41:2596–2613. https://doi.org/10.1007/s00344-021-10493-1

    Article  CAS  Google Scholar 

  • Mahmoud E, Abd EL-Kader N, Robin P, Akkal-Corfini N, Abd El-Rahman L (2009) Effects of different organic and inorganic fertilizers on cucumber yield and some soil properties. World Journal of Agricultural Sciences 5(4):408–414

    CAS  Google Scholar 

  • Mairura FS, Mugendi DN, Mwanje J, Ramisch JJ, Mbugua P, Chianu JN (2007) Integrating scientific and farmers’ evaluation of soil quality indicators in Central Kenya. Geoderma 139(1–2):134–143. https://doi.org/10.1016/j.geoderma.2007.01.019

    Article  CAS  Google Scholar 

  • Malik K, Mirza M, Hassan U, Mehnaz S, Rasul G, Haurat J, Bally R, Normand P (2002) The role of plant-associated beneficial bacteria in rice-wheat cropping system. Biofertilisers in action Rural industries research and development Corporation, Canberra, pp 73–83

    Google Scholar 

  • Malusà E, Pinzari F, Canfora L (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Microbial inoculants in sustainable agricultural productivity, Springer, pp 17-40. https://doi.org/10.1007/978-81-322-2644-4_2

  • Mehboob I, Zahir ZA, Arshad M, Tanveer A, Azam F (2011) Growth promoting activities of different Rhizobium spp. in wheat. Pak J Bot 43(3):1643–1650

    Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience 11:41–61. https://doi.org/10.7916/D8FQ9W9H

    Article  Google Scholar 

  • Mishra D, Rajvir S, Mishra U, Kumar SS (2013) Role of bio-fertilizer in organic agriculture: a review. Research Journal of Recent Sciences ISSN 2277:2502

    Google Scholar 

  • Murage EW, Karanja NK, Smithson PC, Woomer PL (2000) Diagnostic indicators of soil quality in productive and non-productive smallholders. Agriculture, Ecosystems & Environment, 79(1), 1–8. https://doi.org/10.1016/S0167-8809(99)00142-5

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–542. https://doi.org/10.2136/sssaj2008.0240

    Article  CAS  Google Scholar 

  • Narayanamma M, Chiranjeevis C, Ahmed R, Chaturvedi A (2010) Influence of integrated nutrient management on the yield, nutrient status and quality of cucumber (Cucumis sativus L.). Veg Sci 37(1):61–63

    Google Scholar 

  • Naveed M, Mehboob I, Shaker MA, Hussain MB, Farooq M (2015) Biofertilizers in Pakistan: initiatives and limitations. International Journal of Agriculture and Biology 17(3):411–420. https://doi.org/10.17957/IJAB/17.3.14.672

    Article  Google Scholar 

  • Noor M, Naveed ur R, Ajmal J, Fahad S, Muhammad A, Fazli W, Saud S, Hassan S (2020) Climate change and costal plant lives. in: Fahad S, Hasanuzzaman M, Alam M, Ullah H,Saeed M, Khan AK, Adnan M (Ed.), Environment, climate, plant and vegetation growth. Springer Publ Ltd, Cham. pp 93–108. https://doi.org/10.1007/978-3-030-49732-3

  • Okoli P, Nweke I (2015) Effect of poultry manure and mineral fertilizer on the growth performance and quality of cucumber fruits. J Exp Biol Agric Sci 3(4):362–367

    Article  Google Scholar 

  • OrtaÅŸ I, Rafique M, Ahmed Ä°A (2017) Application of arbuscular mycorrhizal fungi into agriculture. In: Arbuscular mycorrhizas and stress tolerance of plants, Springer, pp 305–327. https://doi.org/10.1007/978-981-10-4115-0_13

  • Ortas I, Rafique M, Çekiç F (2021) Do mycorrhizal fungi enable plants to cope with abiotic stresses by overcoming the detrimental effects of salinity and improving drought tolerance? In: Symbiotic soil Microorganisms, Springer, pp 391–428. https://doi.org/10.1007/978-3-030-51916-2_23

  • Qureshi M, Shahzad H, Imran Z, Mushtaq M, Akhtar N, Ali M, Mujeeb F (2013) Potential of Rhizobium species to enhance growth and fodder yield of maize in the presence and absence of l-tryptophan. J Anim Plant Sci 23(5):1448–1454

    CAS  Google Scholar 

  • Rafique M, Ortas I (2018) Nutrient uptake-modification of different plant species in Mediterranean climate by arbuscular mycorrhizal fungi. Eur J Hortic Sci 83(2):65–71. https://doi.org/10.17660/eJHS.2018/83.2.1

    Article  Google Scholar 

  • Rafique M, Sultan T, Ortas I, Chaudhary HJ (2017) Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Sci Plant Nutr 63(5):460–469. https://doi.org/10.1080/00380768.2017.1373599

    Article  CAS  Google Scholar 

  • Roger P-A, Ladha J (1992) Biological N 2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. In: Biological nitrogen fixation for sustainable agriculture, pp 41–55. https://doi.org/10.1007/978-94-017-0910-1_3

  • Ruíz-Sánchez M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168(10):1031–1037. https://doi.org/10.1016/j.jplph.2010.12.019

    Article  CAS  PubMed  Google Scholar 

  • Saeed KS, Ahmed SA, Hassan IA, Ahmed PH (2015) Effect of bio-fertilizer and chemical fertilizer on growth and yield in cucumber (Cucumis sativus) in green house condition. Pak J Biol Sci 18(3):129–134

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251(4):943–953. https://doi.org/10.1007/s00709-013-0607-7

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash P (2019) Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol Indic 105:601–612. https://doi.org/10.1016/j.ecolind.2018.05.084

    Article  Google Scholar 

  • Salar RK, Purewal SS, Sandhu KS (2017) Bioactive profile, free-radical scavenging potential, DNA damage protection activity, and mycochemicals in Aspergillus awamori (MTCC 548) extracts: a novel report on filamentous fungi. 3. Biotech 7(3):1–9. https://doi.org/10.1007/s13205-017-0834-2

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648. https://doi.org/10.1007/s10295-007-0240-6

    Article  CAS  PubMed  Google Scholar 

  • Sarfaraz Q, Silva L, Drescher G, Zafar M, Severo F, Kokkonen A, Molin G, Shafi M, Shafique Q, Solaiman Z (2020) Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-57987-8

    Article  CAS  Google Scholar 

  • Sethi SK, Adhikary SP (2012) Azotobacter: a plant growth-promoting rhizobacteria used as biofertilizer. Dyn Biochem Process Biotechnol Mol Biol 6(1):68–74

    Google Scholar 

  • Shafi MI, Sharif M (2019) Soil extractable phosphorus contents as affected by Phosphatic fertilizer sources applied with different levels of humic acid. Sarhad J Agric 35(4):1084. https://doi.org/10.17582/journal.sja/2019/35.4.1084.1093

    Article  Google Scholar 

  • Shahzad S, Khalid A, Arshad M, Khalid M, Mehboob I (2008) Integrated use of plant growth promoting bacteria and P-enriched compost for improving growth, yield and nodulation of chickpea. Pak J Bot 40(4):1441–1735. https://www.pakbs.org/pjbot/abstracts/40(4)/41.html

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54(12):1064–1068. https://doi.org/10.1139/W08-08

    Article  CAS  PubMed  Google Scholar 

  • Shirinbayan S, Khosravi H, Malakouti MJ (2019) Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Appl Soil Ecol 133:138–145. https://doi.org/10.1016/j.apsoil.2018.09.015

    Article  Google Scholar 

  • Shivprasad S, Page WJ (1989) Catechol formation and melanization by Na+−dependent Azotobacter chroococcum: a protective mechanism for aeroadaptation? Appl Environ Microbiol 55(7):1811–1817. https://doi.org/10.1128/aem.55.7.1811-1817.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3–4):339–353. https://doi.org/10.1016/j.agee.2011.01.017

    Article  Google Scholar 

  • Smith P, Calvin K, Nkem J, Campbell D, Cherubini F, Grassi G, Korotkov V, Le Hoang A, Lwasa S, McElwee P (2020) Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob Chang Biol 26(3):1532–1575. https://doi.org/10.1111/gcb.14878

    Article  PubMed  Google Scholar 

  • Socolofsky M, Wyss O (1962) Resistance of the Azotobacter cyst. J Bacteriol 84(1):119–124. https://doi.org/10.1128/jb.84.1.119-124.1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solaiman ZM, Shafi MI, Beamont E, Anawar HM (2020) Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. Agriculture 10(10):480. https://doi.org/10.3390/agriculture10100480

    Article  CAS  Google Scholar 

  • Soma K, van den Burg SW, Hoefnagel EW, Stuiver M, van der Heide CM (2018) Social innovation–a future pathway for blue growth? Mar Policy 87:363–370. https://doi.org/10.1016/j.marpol.2017.10.008

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2015) Auxin signaling in Azospirillum brasilense: a proteome analysis. In: Biological nitrogen fixation, pp 937–940. https://doi.org/10.1002/9781119053095.ch91

  • Stalstrom VA (1903) Soil microorganisms in relation to availability of soil phosphorus to plants. Zentralblatt fur Barkeriologie Parasitenkunder Infektion Skrankheiten and Hygiene 11:724

    Google Scholar 

  • Ullah S, Liang H, Ali I, Zhao Q, Iqbal A, Wei S, Shah T, Yan B, Jiang L (2020) Biochar coupled with contrasting nitrogen sources mediated changes in carbon and nitrogen pools, microbial and enzymatic activity in paddy soil. J Saudi Chem Soc 24(11):835–849. https://doi.org/10.1016/j.jscs.2020.08.008

    Article  CAS  Google Scholar 

  • Umesha S, Singh PK, Singh RP (2018) Microbial biotechnology and sustainable agriculture. In: Biotechnology for sustainable agriculture, Elsevier. pp 185–205. https://doi.org/10.1016/B978-0-12-812160-3.00006-4

  • Uosif M, Mostafa A, Elsaman R, Moustafa E-S (2014) Natural radioactivity levels and radiological hazards indices of chemical fertilizers commonly used in Upper Egypt. J Radiat Res Appl Sci 7(4):430–437. https://doi.org/10.1016/j.jrras.2014.07.006

    Article  Google Scholar 

  • Vanlauwe B, Kihara J, Chivenge P, Pypers P, Coe R, Six J (2011) Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil 339(1):35–50. https://doi.org/10.1007/s11104-010-0462-7

    Article  CAS  Google Scholar 

  • Vasanthi N, Saleena L, Raj SA (2018) Silica solubilization potential of certain bacterial species in the presence of different silicate minerals. SILICON 10(2):267–275. https://doi.org/10.1007/s12633-016-9438-4

    Article  CAS  Google Scholar 

  • Wahid F, Sharif M, Fahad S, Adnan M, Khan IA, Aksoy E, Ali A, Sultan T, Alam M, Saeed M (2019) Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment. J Plant Nutr 42(15):1760–1769. https://doi.org/10.1080/01904167.2019.1643371

    Article  CAS  Google Scholar 

  • Wu K, Ali I, Xie H, Ullah S, Iqbal A, Wei S, He L, Huang Q, Wu X, Cheng F (2021) Impact of fertilization with reducing in nitrogen and phosphorous application on growth, yield and biomass accumulation of rice (Oryza sativa L.) under a dual cropping system. PeerJ 9:e11668. https://doi.org/10.7717/peerj.11668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Wu K, Iqbal A, Ali I, He L, Ullah S, Wei S, Zhao Q, Wu X, Huang Q (2021) Synthetic nitrogen coupled with seaweed extract and microbial inoculants improves rice (Oryza sativa L.) production under a dual cropping system. Ital J Agron. https://doi.org/10.4081/ija.2021.1800

  • Yageta Y, Osbahr H, Morimoto Y, Clark J (2019) Comparing farmers’ qualitative evaluation of soil fertility with quantitative soil fertility indicators in Kitui County, Kenya. Geoderma 344:153–163. https://doi.org/10.1016/j.geoderma.2019.01.019

    Article  CAS  Google Scholar 

  • Yang H, Schroeder-Moreno M, Giri B, Hu S (2018) Arbuscular mycorrhizal fungi and their responses to nutrient enrichment. In: Root biology, Springer, pp 429–449. https://doi.org/10.1007/978-3-319-75910-4_17

  • Yao Y, Zhang M, Tian Y, Zhao M, Zeng K, Zhang B, Zhao M, Yin B (2018) Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crop Res 216:158–164. https://doi.org/10.1016/j.fcr.2017.11.020

    Article  Google Scholar 

  • Yuan P, Li X, Ni M, Cao C, Jiang L, Iqbal A, Wang J (2022) Effects of straw return and feed addition on the environment and nitrogen use efficiency under different nitrogen application rates in the rice–crayfish system. Plant Soil 475:411–426. https://doi.org/10.1007/s11104-022-05376-7

    Article  CAS  Google Scholar 

  • Zahir ZA, Arshad M (2004) Perspectives in agriculture. Adv Agron 81:97. https://doi.org/10.1016/S0065-2113(03)81003-9

    Article  CAS  Google Scholar 

  • Zahir ZA, Asghar HN, Akhtar MJ, Arshad M (2005) Precursor (L-tryptophan)-inoculum (Azotobacter) interaction for improving yields and nitrogen uptake of maize. J Plant Nutr 28(5):805–817. https://doi.org/10.1081/PLN-200055543

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maid Zaman , Xiangru Tang or Ligeng Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, A. et al. (2023). Biofertilizers to Improve Soil Health and Crop Yields. In: Fahad, S., Danish, S., Datta, R., Saud, S., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 61. Sustainable Agriculture Reviews, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-031-26983-7_11

Download citation

Publish with us

Policies and ethics