Skip to main content

Part of the book series: Agriculture Automation and Control ((AGAUCO))

  • 299 Accesses

Abstract

This chapter describes the current sensing and actuation technologies for pests and plant diseases in orchards and vineyards. The technologies for pests include machine vision and imaging, trapping, data mining, nuclear magnetic resonance (NMR), DNA analysis, landscape and soil management, vibrational signals, precision spraying, and bird control. Some new technologies for pests were developed, such as predicting future infestation using artificial intelligence and pest identification using smartphone apps; however, more efforts will still be needed. The technologies utilized in plant disease detection and management include computer vision, thermography, spectroscopy, chlorophyll fluorescence, multi- and hyperspectral imaging, plant volatile organic compounds, biosensors, sensing platforms and robots, and artificial intelligence. Overall, new, reliable, easy-to-use, and objective methods will still be needed, along with continued support and interest from growers and industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamides, G., Christou, G., Katsanos, C., Kostaras, N., Xenos, M., Hadzilacos, T., & Edan, Y. (2014). A reality-based interaction interface for an agricultural teleoperated robot sprayer. In International Conference on Robotics and Associated High-Technologies and Equipment for Agriculture and Forestry, 2.

    Google ScholarĀ 

  • Adamides, G., Katsanos, C., Constantinou, I., Christou, G., Xenos, M., Hadzilacos, T., & Edan, Y. (2017). Design and development of a semi-autonomous agricultural vineyard sprayer: Humanā€“robot interaction aspects. Journal of Field Robotics, 34(8), 1407ā€“1426.

    ArticleĀ  Google ScholarĀ 

  • Albetis, J., Duthoit, S., Guttler, F., Jacquin, A., Goulard, M., PoilvĆ©, H., FĆ©ret, J. B., & Dedieu, G. (2017). Detection of Flavescence dorĆ©e grapevine disease using Unmanned Aerial Vehicle (UAV) multispectral imagery. Remote Sensing, 9(4), 308.

    ArticleĀ  Google ScholarĀ 

  • Albetis, J., Jacquin, A., Goulard, M., PoilvĆ©, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorĆ©e and Grapevine Trunk Diseases. Remote Sensing, 11(1), 23.

    ArticleĀ  Google ScholarĀ 

  • Ali, M. M., Bachik, N. A., Muhadi, N., Tuan Yusof, T. N., & Gomes, C. (2019). Non-destructive techniques of detecting plant diseases: A review. Physiological and Molecular Plant Pathology, 108, 101426.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ampatzidis, Y., Ward, J., & Samara, O. (2015). Autonomous system for pest bird control in specialty crops using unmanned aerial vehicles (ASABE paper no. 152181748). ASABE.

    Google ScholarĀ 

  • Beers, E. H., Brunner, J. F., Willet, M. J., & Warner, G. M. (1993). Orchard pest management ā€“ A resource book for the Pacific Northwest. Good Fruit Grower.

    Google ScholarĀ 

  • BĆ©langer, M. C., Roger, J. M., Cartolaro, P., Viau, A., & Bellon-Maurel, V. (2008). Detection of powdery mildew in grapevine using remotely-sensed UV-induced fluorescence. International Journal of Remote Sensing, 29(6), 1707ā€“1724.

    Google ScholarĀ 

  • Belasque, J., Gasparoto, M. C. G., & Marcassa, L. G. (2008). Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Applied Optics, 47, 1922ā€“1926.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Benheim, D., Rochfort, S., Robertson, E., Potter, I. D., & Powell, K. S. (2012). Grape phylloxera (Daktulosphaira vitifoliae) ā€“ A review of potential detection and alternative management options. The Annals of Applied Biology, 161, 91ā€“115.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Berenstein, R., Ben Shahar, O., Shapiro, A., & Edan, Y. (2010). Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intel Serv Robotics, 3, 233ā€“243.

    ArticleĀ  Google ScholarĀ 

  • Bhusal, S., Goel, S., Khanal, K., Taylor, M., & Karkee, M. (2017). Bird detection, tracking and counting in wine grapes. In 2017 ASABE annual international meeting (p. 1). American Society of Agricultural and Biological Engineers.

    Google ScholarĀ 

  • Bhusal, S., Khanal, K., Karkee, M., Steensma, K., & Taylor, M. E. (2018, June). Unmanned aerial systems (UAS) for mitigating bird damage in wine grapes. In Proceedings of the 14th international conference on precision agriculture, Montreal, Quebec, Canada

    Google ScholarĀ 

  • Bhusal, S., Bhattarai, U., & Karkee, M. (2019). Improving pest bird detection in a vineyard environment using super-resolution and deep learning. IFAC-PapersOnLine, 52(30), 18ā€“23.

    ArticleĀ  Google ScholarĀ 

  • Blanchfield, A. L., Sharon, A., Robinson, Renzullo, L. J., & Powell, K. S. (2006). Phylloxera-infested grapevines have reduced chlorophyll and increased photoprotective pigment contentā€”Can leaf pigment composition aid pest detection? Functional Plant Biology, 33, 507ā€“514.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Blasco, J., Aleixos, N., GĆ³mez, J., & MoltĆ³, E. (2007). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384ā€“393.

    ArticleĀ  Google ScholarĀ 

  • Bostanian, N. J., Vincent, C., & Isaacs, R. (2012). Arthropod management in vineyards: Pests, approaches, and future directions. Springer.

    BookĀ  Google ScholarĀ 

  • Brilli, F., Loreto, F., & Baccelli, I. (2019). Exploiting plant volatile organic compounds (VOCS) in agriculture to improve sustainable defense strategies and productivity of crops. Frontiers in Plant Science, 10(264), 1ā€“8.

    Google ScholarĀ 

  • Bruce, R. J., Lamb, D. W., Mackie, A. M., Korosi, G. A., & Powell, K. S. (2009). Using objective biophysical measurements as the basis of targeted surveillance for detection of grapevine Phylloxera Daktulosphaira vitifoliae Fitch: Preliminary findings. Acta Horticulturae, 816, 71ā€“80.

    ArticleĀ  Google ScholarĀ 

  • Bruce, R. J., Powell, K. S., Lamb, D. W., Hoffmann, A. A., & Runting, J. (2011). TOWARDS improved early detection of grapevine phylloxera (Daktulosphaira vitifoliae FITCH) using a risk-based assessment. Acta Horticulturae, 904, 123ā€“131. https://doi.org/10.17660/ActaHortic.2011.904.17

    ArticleĀ  Google ScholarĀ 

  • CalderĆ³n, R., Navas-CortĆ©s, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231ā€“245.

    ArticleĀ  Google ScholarĀ 

  • Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026ā€“4047.

    ArticleĀ  Google ScholarĀ 

  • Chen, L., Wallhead, M., Zhu, H., & Fulcher, A. (2019). Control of insects and diseases with intelligent variable-rate sprayers in ornamental nurseries. Journal of Environmental Horticulture, 37(3), 90ā€“100.

    ArticleĀ  Google ScholarĀ 

  • CsĆ©falvay, L., Gaspero, G. D., MatouÅ”, K., Bellin, D., Ruperti, B., & OlejnƭčkovĆ”, J. (2009). Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. European Journal of Plant Pathology, 125(2), 291ā€“302.

    ArticleĀ  Google ScholarĀ 

  • Dara, S. K. (2019). The new integrated pest management paradigm for the modern age. Journal of Integrated Pest Management, 10(1), 12; 1ā€“9. https://doi.org/10.1093/jipm/pmz010

    ArticleĀ  Google ScholarĀ 

  • Delalieux, S., van Aardt, J., Keulemans, W., Schrevens, E., & Coppin, P. (2007). Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications. European Journal of Agronomy, 27(1), 130ā€“143.

    ArticleĀ  Google ScholarĀ 

  • Diepenbrock, L. M., Qureshi, J., Stelinski, L., & Stansly, P. A. (2019a). 2019ā€“2020 Florida Citrus production guide: Asian citrus psyllid. CG097. UF/IFAS Extension Service.

    Google ScholarĀ 

  • Diepenbrock, L. M., Qureshi, J., Stelinski, L., & Stansly, P. A. (2019b). 2019ā€“2020 Florida citrus production guide: Citrus Leafminer. CG098. UF/IFAS Extension Service.

    Google ScholarĀ 

  • Ding, W., & Graham, T. (2016). Automatic moth detection from trap images for pest management. Computers and Electronics in Agriculture, 123, 17ā€“28. https://doi.org/10.1007/s11370-010-0078-z

    ArticleĀ  Google ScholarĀ 

  • Dolezel, P., Skrabanek, P., & Gago, L. (2016). Pattern recognition neural network as a tool for pest birds detection. 2016 IEEE Symposium Series on Computational Intelligence.

    Google ScholarĀ 

  • Duncan, L., & Mannion, C. (2019). 2019ā€“2020 Florida Citrus production guide: Citrus root weevils, ENY-611. UF/IFAS Extension Service.

    Google ScholarĀ 

  • Ebrahimi, M. A., Khoshtaghaza, M. H., Minaei, S., & Jamshidi, B. (2017). Vision-based pest detection based on SVM classification method. Computers and Electronics in Agriculture, 137, 52ā€“58.

    ArticleĀ  Google ScholarĀ 

  • EscolĆ , A., Rosell-Polo, J. R., Planas, S., Gil, E., Pomar, J., Camp, F., Llorens, J., & Solanelles, F. (2013). Variable rate sprayer. Part 1ā€“Orchard prototype: Design, implementation and validation. Computers and Electronics in Agriculture, 95, 122ā€“135.

    ArticleĀ  Google ScholarĀ 

  • Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors and Bioelectronics, 5(3), 537ā€“561.

    CASĀ  Google ScholarĀ 

  • Fang, Y., Umasankar, Y., & Ramasamy, R. P. (2014). Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. The Analyst, 139, 3804ā€“3810.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fedor, P., J. Vanhara, J. Havel, I. Malenovsky, I. Spellerberg. (2009). Artificial intelligence in pest insect monitoring. Systemic Entomology 34(2): 398ā€“400.

    Google ScholarĀ 

  • Florian, N., Granicz, L., Gergocs, V., Toth, F., & Dombos, M. (2020). Detecting soil microarthropods with a camera-supported trap. Insects, 11, 244.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture, 91, 106ā€“115.

    ArticleĀ  Google ScholarĀ 

  • Gil, E., Llorens, J., Llop, J., FĆ bregas, X., EscolĆ , A., & Rosell-Polo, J. R. (2013). Variable rate sprayer. Part 2ā€“Vineyard prototype: Design, implementation, and validation. Computers and Electronics in Agriculture, 95, 136ā€“150.

    ArticleĀ  Google ScholarĀ 

  • Goodman, B. A., Williamson, B., & Chudek, J. A. (1992). Non-invasive observation of the development of fungal infection in fruit. Protoplasma, 166, 107ā€“109.

    ArticleĀ  Google ScholarĀ 

  • GutiĆ©rrez, S. (2019). Artificial intelligence in digital agriculture. Towards in-field grapevine monitoring using non-invasive Sensors. PhD thesis. University of La Rioja. 2019.

    Google ScholarĀ 

  • GutiĆ©rrez, S., FernĆ”ndez-Novales, J., Diago, M. P., & Tardaguila, J. (2018). On-the-go hyperspectral imaging under field conditions and machine learning for the classification of grapevine varieties. Frontiers in Plant Science, 9, 1102.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hassan, S. N. A., Nadiah, S. A., & Rahman, Z. Z. H. S. L. W. (2014, May). Automatic classification of insects using color-based and shape-based descriptors. International Journal of Applied Control, Electrical and Electronics Engineering (IJACEEE), 2(2).

    Google ScholarĀ 

  • Hillier, N. K., & Lefebvre, J. (2012). Detection of insect pests of grapes, Vitis vinifera, in vineyards of Nova Scotia through pheromone trapping. Journal of the Acadian Entomological Society, 8, 30ā€“35.

    Google ScholarĀ 

  • HillnhĆ¼tter, Mahlein, A.-K., Sikora, R. A., & Oerke, E.-C. (2011). Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crops Research, 122, 70ā€“77.

    ArticleĀ  Google ScholarĀ 

  • Hou, J., Li, L., & He, J. (2016). Detection of grapevine leafroll disease based on 11-index imagery and ant colony clustering algorithm. Precision Agriculture, 17(4), 488ā€“505.

    ArticleĀ  Google ScholarĀ 

  • Huang, M., Wan, X., Zhang, M., & Zhu, Q. (2013). Detection of insect-damaged vegetable soybeans using hyperspectral transmittance image. Journal of Food Engineering, 116(1), 45ā€“49.

    ArticleĀ  Google ScholarĀ 

  • Judt, C., GuzmĆ”n, G., GĆ³mez, J. A., Cabezas, J. M., Entrenas, J. A., Winter, S., Zaller, J. G., & Paredes, D. (2019). Diverging effects of landscape factors and inter-row management on the abundance of beneficial and herbivorous arthropods in Andalusian vineyards (Spain). Insects, 10, 320.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kang, F., Pierce, F. J., Walsh, D. B., Zhang, Q., & Wang, S. (2011). An automated trailer sprayer system for targeted control of cutworm in vineyards. Transactions of the ASABE, 54(4), 1511ā€“1519.

    ArticleĀ  Google ScholarĀ 

  • Khater, M., de la Escosura-MuƱiz, A., & MerkoƧi, A. (2017). Biosensors for plant pathogen detection. Biosensors and Bioelectronics, 93, 72ā€“86.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • KorinÅ”ek, G., Derlink, M., Virant-Doberlet, M., & Tuma, T. (2016). An autonomous system of detecting and attracting leafhopper males using species- and sex-specific substrate borne vibrational signals. Computers and Electronics in Agriculture, 123, 29ā€“39. https://doi.org/10.1016/j.compag.2016.02.006

    ArticleĀ  Google ScholarĀ 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1ā€“9.

    Google ScholarĀ 

  • Kulkarni, S.S., S.G. Bajwa, R.T. Robbins, T. A. Costello, T. L. Kirkpatrick. (2008). Effect of soybean cyst nematode (Heterodera Glycines) resistance rotation on SCN population distribution, soybean canopy reflectance, and grain yield. Transactions of the ASABE 51(5): 1511ā€“1517.

    Google ScholarĀ 

  • Kumar, A., Lee, W. S., Ehsani, R., Albrigo, G., Yang, C., & Mangan, R. L. (2012). Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques. Journal of Applied Remote Sensing, 6(1).

    Google ScholarĀ 

  • Latouche, G., Debord, C., Raynal, M., Milhade, C., & Cerovic, Z. G. (2015). First detection of the presence of naturally occurring grapevine downy mildew in the field by a fluorescence-based method. Photochemical and Photobiological Sciences, 14(10), 1807ā€“1813.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lawrence, G. W., King, R., Kelly, A. T., & Vickery, J. (2007). Method for detecting and managing nematode population. U.S. Patent No. 7,271,386 B2.

    Google ScholarĀ 

  • Lee, W. S., Ehsani, R., & Albrigo, L. G. (2008). Citrus greening (Huanglongbing) detection using aerial hyperspectral imaging. In Proceedings of the 9th International Conference on Precision Agriculture, Denver, CO.

    Google ScholarĀ 

  • Levasseur-Garcia, C., Malaurie, H., & Mailhac, N. (2016). An infrared diagnostic system to detect causal agents of grapevine trunk diseases. Journal of Microbiological Methods, 131, 1ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li, Y., Xia, C., & Lee, J. (2009, July 5ā€“8). Vision-based pest detection and automatic spray of greenhouse plant. In IEEE International Symposium on Industrial Electronics (ISlE 2009). Seoul Olympic Parktel.

    Google ScholarĀ 

  • Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A. R., Yang, C., & Mangan, R. L. (2015). Feasibility study on Huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery. Biosystems Engineering, 132, 28ā€“38.

    ArticleĀ  Google ScholarĀ 

  • Liburd, O. E., Lopez, L., Carrillo, D., Revynthi, A. M., Olaniyi, O., & Akyazi, R. (2019). Integrated pest management of mites. In M. Kogan & E. A. Heinrichs (Eds.), Integrated management of insect pests: Current and future developments. Burleigh Dodds Science Publishing.

    Google ScholarĀ 

  • Lins, E. C., Belasque, J., & Marcassa, L. G. (2009). Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy. Precision Agriculture, 10, 319ā€“330.

    ArticleĀ  Google ScholarĀ 

  • Maes, W. H., Minchin, P. E. H., Snelgar, W. P., & Steppe, K. (2014). Early detection of Psa infection in kiwifruit by means of infrared thermography at leaf and orchard scale. Functional Plant Biology, 41(12), 1207ā€“1220.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Mahlein, A. K. (2016). Plant disease detection by imaging sensors parallels and specific demands for precision agriculture and plant phenotyping. Plant Diseases, 100, 241ā€“251.

    ArticleĀ  Google ScholarĀ 

  • Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., PlĆ¼mer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21ā€“30.

    ArticleĀ  Google ScholarĀ 

  • Mahlein, A. K., Kuska, M. T., Behmann, J., Polder, G., & Walter, A. (2018). Hyperspectral sensors and imaging technologies in phytopathology: State of the art. Annual Review of Phytopathology, 56, 535ā€“558.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mahlein, A. K., Kuska, M. T., Thomas, S., Wahabzada, M., Behmann, J., Rascher, U., & Kersting, K. (2019). Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: Seamless interlocking of phytopathology, sensors, and machine learning is needed! Current Opinion in Plant Biology, 50, 156ā€“162.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E., & Dandekar, A. M. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35(1), 1ā€“25.

    ArticleĀ  Google ScholarĀ 

  • Moriya, Ɖ. A. S., Imai, N. N., Tommaselli, A. M. G., Berveglieri, A., Honkavaara, E., Soares, M. A., Marino, M. (2019). Detecting citrus huanglongbing in Brazilian orchards using hyperspectral aerial images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, ISPRS Geospatial Week 2019, 10ā€“14 June 2019, Enschede, The Netherlands.

    Google ScholarĀ 

  • Naidu, R. A., Maree, H. J., & Burger, J. T. (2015). Grapevine leafroll disease and associated viruses: A unique pathosystem. Annual Review of Phytopathology, 53, 613ā€“634.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nam, N. T., & Hung, P. D. (2018). Pest detection on traps using deep convolutional neural networks. In ICCCV ā€˜18: Proceedings of the 2018 International Conference on Control and Computer Vision June 2018 (pp. 33ā€“38).

    Google ScholarĀ 

  • Niu, H., Zhao, T., Westphal, A., & Chen, Y. Q. (2020). A low-cost proximate sensing method for early detection of nematodes in walnut using Walabot and scikit-learn classification algorithms. Proc. SPIE 11414, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V, 114140K. https://doi.org/10.1117/12.2558214.

  • Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., & Borghese, A. N. (2014). Automatic detection of powdery mildew on grapevine leaves by image analysis: Optimal view-angle range to increase the sensitivity. Computers and Electronics in Agriculture, 104, 1ā€“8.

    ArticleĀ  Google ScholarĀ 

  • Oerke, E. C., Frƶhling, P., & Steiner, U. (2011). Thermographic assessment of scab disease on apple leaves. Precision Agriculture, 12(5), 699ā€“715.

    ArticleĀ  Google ScholarĀ 

  • Oerke, E. C., Herzog, K., & Toepfer, R. (2016). Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola. Journal of Experimental Botany, 67(18), 5529ā€“5543.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pan, T.-T., Chyngyz, E., Sun, D.-W., Paliwal, J., & Pu, H. (2019). Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging. Postharvest Biology and Technology, 154, 96ā€“104.

    ArticleĀ  Google ScholarĀ 

  • Partel, V., Nunes, L., Stansly, P., & Ampatzidis, Y. (2019). Automated vision-based system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence. Computers and Electronics in Agriculture, 162, 328ā€“336. https://doi.org/10.1016/j.compag.2019.04.022

    ArticleĀ  Google ScholarĀ 

  • Poblete-EcheverrĆ­a C., Tardaguila J.(2023). Digital technologies: Smart applications in viticulture. In: Encyclopedia of Smart Agriculture Technologies. Springer. In press.

    Google ScholarĀ 

  • PĆ©rez-Roncal, C., LĆ³pez-Maestresalas, A., Lopez-Molina, C., JarĆ©n, C., Urrestarazu, J., Santesteban, L. G., & Arazuri, S. (2020). Hyperspectral imaging to assess the presence of powdery mildew (Erysiphe necator) in cv. Carignan noir grapevine bunches. Agronomy, 10(1), 88.

    ArticleĀ  Google ScholarĀ 

  • Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52(3), 273ā€“288.

    ArticleĀ  Google ScholarĀ 

  • Polder, G., Blok, P. M., de Villiers, H. A. C., van der Wolf, J. M., & Kamp, J. (2019). Potato virus Y detection in seed potatoes using deep learning on hyperspectral images. Frontiers in Plant Science, 10, 1ā€“13.

    ArticleĀ  Google ScholarĀ 

  • Pydipati, R., Burks, T. F., & Lee, W. S. (2006). Identification of citrus disease using color texture features and discriminant analysis. Computers and Electronics in Agriculture, 52(1ā€“2), 49ā€“59.

    ArticleĀ  Google ScholarĀ 

  • Qin, J., Burks, T. F., Kim, M. S., Chao, K., & Ritenour, M. A. (2008). Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sensing and Instrumentation for Food Quality and Safety, 2, 168ā€“177.

    ArticleĀ  Google ScholarĀ 

  • Qureshi, J., & Stansly, P. (2019). 2019ā€“2020 Florida citrus production guide: Rust mites, spider mites, and other phytophagous mites. ENY-603. UF/IFAS Extension Service.

    Google ScholarĀ 

  • Ray, M., Ray, A., Dash, S., Mishra, A., Achary, K. G., Nayak, S., & Singh, S. (2017). Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosensors and Bioelectronics, 87, 708ā€“723.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Renkema, J., Buitenhuis, R., & Hallett, R. H. (2014). Optimizing trap design and trapping protocols for Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 107(6), 2107ā€“2118. https://doi.org/10.1603/EC14254

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Rieger, T. (2019). The latest in vineyard sensor technology. Available at https://www.winebusiness.com/news/?dataId=224077&go=getArticle. Accessed on 28 June 2020.

  • RomĆ”n, C., Llorens, J., Uribeetxebarria, A., Sanz, R., Planas, S., & ArnĆ³, J. (2020). Spatially variable pesticide application in vineyards: Part II, field comparison of uniform and map-based variable dose treatments. Biosystems Engineering, 195, 42ā€“53.

    ArticleĀ  Google ScholarĀ 

  • SĆ”enz-Romo, M. G., Veas-Bernal, A., MartĆ­nez-GarcĆ­a, H., IbƔƱez-Pascual, S., MartĆ­nez-Villar, E., Campos-Herrera, R., Marco-MancebĆ³n, V. S., & PĆ©rez-Moreno, I. (2019). Effects of ground cover management on insect predators and pests in a Mediterranean vineyard. Insects, 10, 421.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Salgadoe, A. S. A., Robson, A. J., Lamb, D. W., Dann, E. K., & Searle, C. (2018). Quantifying the severity of phytophthora root rot disease in avocado trees using image analysis. Remote Sensing, 10(2), 226.

    ArticleĀ  Google ScholarĀ 

  • Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, 1ā€“13.

    ArticleĀ  Google ScholarĀ 

  • Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, N. R., & Pavek, K. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, 70, 112ā€“123.

    ArticleĀ  Google ScholarĀ 

  • Schumann, A., Mungofa, P., Waldo, L., & Oswalt, C. (2020). Smartphone apps for diagnosing citrus nutrient deficiencies, pests and diseases. EDIS, 2020(March) https://journals.flvc.org/edis/article/view/120606

  • Shen, Y., Zhou, H., Li, J., Jian, F., & Jayas, D. S. (2018). Detection of stored-grain insects using deep learning. Computers and Electronics in Agriculture, 145, 319ā€“325.

    ArticleĀ  Google ScholarĀ 

  • Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience, 2016, 1ā€“11.

    ArticleĀ  Google ScholarĀ 

  • Sozzi, M., Kayad, A., Marinello, F., Taylor, J. A., & Tisseyre, B. (2020). Comparing vineyard imagery acquired from Sentinel-2 and Unmanned Aerial Vehicle (UAV) platform. OENO One, 2020(2), 189ā€“197.

    ArticleĀ  Google ScholarĀ 

  • Stoll, M., Schultz, H. R., Baecker, G., & Berkelmann-Loehnertz, B. (2008). Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precision Agriculture, 9(6), 407ā€“417.

    ArticleĀ  Google ScholarĀ 

  • Tholl, D., Boland, W., Hansel, A., Loreto, F., Rƶse, U., & Schnitzler, J. P. (2006). Practical approaches to plant volatile analysis. The Plant Journal, 45, 540ā€“560.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Thomas, S., Kuska, M. T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., Behmann, J., & Mahlein, A.-K. (2018). Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. Journal of Plant Diseases and Protection, 125(1), 5ā€“20.

    ArticleĀ  Google ScholarĀ 

  • Tisseyre, B., Ojeda, H., & Taylor, J. (2007). New technologies and methodologies for site-specific viticulture. The International des Sciences de la Vigne et du Vin, 7, 41(2), 63ā€“76.

    Google ScholarĀ 

  • Tripathy, A. K., J. Adinarayana, D. Sudharsan, S. N. Merchant, U. B. Desai, K. Vijayalakshmi, D. Raji Reddy, G. Sreenivas, S. Ninomiya, M. Hirafuji, T. Kiura, K. Tanaka. (2011). Data mining and wireless sensor network for agriculture Pest/Disease predictions. 2011 World congress on information and communication technologies. IEEE.

    Google ScholarĀ 

  • Tucker, D. J., Lamb, D. L., Powell, K. S., Blanchfield, A. L., & Brereton, I. M. (2007). Detection of phylloxera infestation in grapevines by NMR methods. Acta Horticulturae, 733, 173ā€“181. https://doi.org/10.17660/ActaHortic.2007.733.19

    ArticleĀ  CASĀ  Google ScholarĀ 

  • USDA ERS. (1999). Pest and pest management. Available at https://www.ers.usda.gov/publications/pub-details/?pubid=41926. Accessed on 5 Jan 2019.

  • Vanegas, F., Bratanov, D., Powell, K., Weiss, J., & Gonzalez, F. (2018). A Novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data. Sensors, 18, 260. https://doi.org/10.3390/s18010260

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Vaz, A. T., Monteiro, S., Oliveira, H., & Ferreira, R. B. (2012). A non-destructive method to locate internal wood symptoms of Esca disease in grapevine plants. In 8th International Workshop on Grapevine Trunk Diseases. Valencia, Spain, 18ā€“21 June 2012. Phytopathologia Mediterranea, 51(2), 424.

    Google ScholarĀ 

  • Vikram, A., Lui, L. H., Hossain, A., & Kushalappa, A. C. (2006). Metabolic fingerprinting to discriminate diseases of stored carrots. Annals of Applied Biology, 148, 17ā€“26.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wen, C., & Guyer, D. (2012). Image-based orchard insect automated identification and classification method. Computers and Electronics in Agriculture, 89, 110ā€“115.

    ArticleĀ  Google ScholarĀ 

  • Wijekoon, C. P., Goodwin, P. H., & Hsiang, T. (2008). Quantifying fungal infection of plant leaves by digital image analysis using scion image software. Journal of Microbiology Methods, 74, 94ā€“101.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wilson, H., & Daane, K. M. (2017). Review of ecologically-based pest management in California vineyards. Insects, 8, 108. https://doi.org/10.3390/insects8040108

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Xia, D., Chen, P., Wang, B., Zhang, J., & Xie, C. (2018). Insect detection and classification based on an improved convolutional neural network. Sensors, 2018(18), 4169. https://doi.org/10.3390/s18124169

    ArticleĀ  Google ScholarĀ 

  • Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., HernĆ”ndez-Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P. R. J., Landa, B. B., Boscia, D., Saponari, M., & Navas-Cortes, J. A. (2018). Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4(7), 432ā€“439.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang, B. H., Li, J. B., Zheng, L., Huang, W. Q., Fan, S. X., Zhao, C. J., & Meng, Q. D. (2015). Development of a hyperspectral imaging system for the early detection of apple rottenness caused by Penicillium. Journal of Food Process Engineering, 38(5), 499ā€“509.

    ArticleĀ  Google ScholarĀ 

  • Zhu, H., Chu, B., Zhang, C., Liu, F., Jiang, L., & He, Y. (2017). Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Scientific Reports, 7(1), 4125.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Suk Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, W.S., Tardaguila, J. (2023). Pest and Disease Management. In: Vougioukas, S.G., Zhang, Q. (eds) Advanced Automation for Tree Fruit Orchards and Vineyards. Agriculture Automation and Control. Springer, Cham. https://doi.org/10.1007/978-3-031-26941-7_5

Download citation

Publish with us

Policies and ethics