Skip to main content

Micro-molding and Its Application to Drug Delivery

  • Chapter
  • First Online:
Nano- and Microfabrication Techniques in Drug Delivery
  • 464 Accesses

Abstract

Micro-molding techniques are used in many areas including pharmaceutical technology. Injection molding is the cyclic process of polymer processing. Most of them are thermoplastics. The procedure is performed by injecting a molten polymer of a certain viscosity from an injection unit into a tempered mold using heat and pressure. The workpiece hardens in the mold by cooling or by cross-linking. Hot embossing uses pressure. The template is pressed into a heated polymer. In this case, a thermo-softening polymer is placed between molds, heated, and later allowed to cool maintaining constant pressure. Casting is a process where the non-viscous polymer is poured into a tempered mold. The casting takes the shape of the mold cavity and is created in it by evaporating the solvent or dispersant, gelling, chemical reactions, or cross-linking. These techniques can also be applied to prepare solid dosage forms or controlled-release systems such as implants or vaginal rings among others. In this way, using these techniques results in precise medication. It is directly related to the patient’s quality of life and successful treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkader H, Fathalla Z, Seyfoddin A, Farahani M, Thrimawithana T, Allahham A, Alani AWG, Al-Kinani AA, Alany G (2021) Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: inserts, patches, wafers, and implants. Adv Drug Deliv Rev 177:113957

    Article  CAS  PubMed  Google Scholar 

  • Ashby LS, Smith KA, Stea B (2016) Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. W J Surg Oncol 14:225

    Article  Google Scholar 

  • Augsburger LL, Hoag SW (2008a) Pharmaceutical dosage forms: tablets, Volume 1: Unit operations and mechanical properties, 3rd edn. Informa Healthcare, New York, NY

    Google Scholar 

  • Augsburger LL, Hoag SW (2008b) Pharmaceutical dosage forms: tablets, volume 2: rational design and formulation, 3rd edn. Informa Healthcare, New York

    Google Scholar 

  • Augsburger LL, Hoag SW (2008c) Pharmaceutical dosage forms: tablets, volume 3: manufacture and process control, 3rd edn. Informa Healthcare, New York

    Book  Google Scholar 

  • Bastiancich C, Danhier P, Preat V, Danhier F (2016) Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release 243:29–42

    Article  CAS  PubMed  Google Scholar 

  • Bastiancich C, Bozzato E, Henley I, Newland B (2021) Does local drug delivery still hold therapeutic promise for brain cancer? A systematic review. J Control Release 337:296–305

    Article  CAS  PubMed  Google Scholar 

  • Bekmurzayevaa A, Duncansond WJ, Azevedoc HS, Kanayevaf D (2018) Surface modification of stainless steel for biomedical applications: revisiting a century-old material. Mater Sci Eng C 93:1073–1089

    Article  Google Scholar 

  • Blaesi AH (2014) The design and manufacture of immediate-release optimal solid dosage forms. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  • Bocquet L, Tabeling P (2014) Physics and technological aspects of nanofluidics. Lab Chip 14:3143–3158

    Article  CAS  PubMed  Google Scholar 

  • Boothroyd G, Dewhurst P, Knight WA (2011) Design for injection molding. In: Boothroyd G, Dewhurst P, Knight WA (eds) Product design for manufacture and assembly, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Bota DA, Desjardins A, Quinn JA, Affronti ML, Friedman HS (2007) Interstitial chemotherapy with biodegradable BCNU (Gliadel) wafers in the treatment of malignant gliomas. Ther Clin Risk Manag 3:707–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brache V, Faundes A (2010) Contraceptive vaginal rings: a review. Contraception 82:418–427

    Article  CAS  PubMed  Google Scholar 

  • Brache V, Payáan LJ, Faundes A (2013) Current status of contraceptive vaginal rings. Contraception 87:264–272

    Article  CAS  PubMed  Google Scholar 

  • Bregy A, Shah AH, Diaz MV, Pierce HE, Ames PL, Diaz D et al (2013) The role of Gliadel wafers in the treatment of high-grade gliomas. Expert Rev Anticancer Ther 13:1453–1461

    Article  CAS  PubMed  Google Scholar 

  • Busch C, Zur D, Fraser-Bell S, Lains I, Santos AR, Lupidi M et al (2018) Shall we stay, or shall we switch? Continued antiVEGF therapy versus early switch to dexamethasone implant in refractory diabetic macular edema. Acta Diabetol 55:789–796

    Article  CAS  PubMed  Google Scholar 

  • Čatić I (2006) Uvod u proizvodnju polimernih tvorevina. Biblioteka Polimerstvo, Zagreb, pp 1–9

    Google Scholar 

  • Cuff G, Raouf F (1998) A preliminary evaluation of injection molding as a technology to produce tablets. Pharm Tech 22:96–106

    Google Scholar 

  • das Neves J, Amaral MH, Bahia MF (2008) Vaginal drug delivery: vaginal drug delivery systems. In: Cox Gad S (ed) Pharmaceutical manufacturing handbook: production and processes. Wiley, Hoboken, pp 809–878

    Chapter  Google Scholar 

  • Dash A, Cudworth G (1998) Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Meth 40(1):1–12

    Article  CAS  Google Scholar 

  • Debono M, Voicu D, Pousti M, Safdar M, Young R, Kumacheva E, Greener J (2016) One-step fabrication of microchannels with integrated three dimensional features by hot intrusion embossing. Sensors 16:2023

    Article  PubMed  PubMed Central  Google Scholar 

  • Đekić L, Primorac M (2016) Farmaceutsko-tehnološki aspekti terapijskih sistema za hormonsku kontracepciju. Arh farm 66:217–238

    Google Scholar 

  • Duffy DC, Schueller OJA, Brittain ST, Whitesides GM (1999) Rapid prototyping of microfluidic switches in poly(dimethylsiloxane) and their actuation by electro-osmotic flow. J Micromech Microeng 9:211

    Article  CAS  Google Scholar 

  • Farooque R, Asjad M, Rizvi SJA (2021) A current state of art applied to injection moulding manufacturing process – a review. Mater Today: Proc 43:441–446

    CAS  Google Scholar 

  • Filipović M, Đekić L (2017) Karakteristike terapijskih sistema za vaginalnu primenu/characteristics of vaginal delivery systems. Arh farm 67:360–367

    Article  Google Scholar 

  • Friend DR (2011) Intravaginal rings: controlled release systems for contraception and prevention of transmission of sexually transmitted infections. Drug Deliv Transl Res 1:185–193

    Article  CAS  PubMed  Google Scholar 

  • Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M et al (1998) Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 58:672–684

    CAS  PubMed  Google Scholar 

  • Gale BK, Jafek AR, Lambert CJ, Goenner BL, Moghimifam H, Nze UC, Kamarapu SK (2018) A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3:60

    Article  Google Scholar 

  • Giboz J, Copponnex T, Mélé P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17(6):96–109

    Article  Google Scholar 

  • Gokhale A, McConnell J, Loxley A, Mitchnick M (2009) Combination devices to protect women from sexual transmission of HIV. Drug Del Technol 9:18–21

    CAS  Google Scholar 

  • Grossman SA, Reinhard C, Colvin OM, Chasin M, Brundrett R, Tamargo RJ et al (1992) The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 76:640–647

    Article  CAS  PubMed  Google Scholar 

  • Grube E, Schofer J, Hauptmann KE, Nickenig G, Curzen N, Allocco DJ, Dawkins KD (2010) A novel paclitaxel-eluting stent with an ultrathin abluminal biodegradable polymer. JACC Cardiovasc Interv 3(4):431–438

    Article  PubMed  Google Scholar 

  • Heckele M, Schomburg WK (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14:R1–R14

    Article  CAS  Google Scholar 

  • Hoffman AS (2008) The origins and evolution of “controlled” drug delivery systems. J Control Release 132(3):153–163

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Ahsan F (2005) The vagina as a route for systemic drug delivery. J Control Release 103(2):301–313

    Article  CAS  PubMed  Google Scholar 

  • Jaime A, Maria D, de Benito R, Lefebvre M, Sicard E, Furtado M et al (2017) Pharmacokinetic bioequivalence, safety and acceptability of Ornibel®, a new polymer composition contraceptive vaginal ring (etonogestrel/ethinylestradiol 11.00/3.474 mg) compared with Nuvaring ® (etonogestrel/ethinylestradiol 11.7/2.7 mg). Eur J Contracept Reprod Health Care 22(6):429–438

    Article  Google Scholar 

  • Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas - a clinical review of three selected approaches. Pharmacol Ther 139:341–358

    Article  CAS  PubMed  Google Scholar 

  • Kerns J, Darney P (2011) Vaginal ring contraception. Contraception 2011(83):107–115

    Article  Google Scholar 

  • Kim E, Xia Y, Whitesides GM (1995) Polymeric microstructures formed by moulding in capillaries. Nature 376:581–584

    Article  CAS  Google Scholar 

  • Kim S, Traore YL, Chen Y, Ho EA, Liu S (2018a) Switchable on-demand release of a nanocarrier from a segmented reservoir type intravaginal ring filled with a pH-responsive supramolecular polyurethane hydrogel. ACS Appl Biol Mater 1:652–662

    Article  CAS  Google Scholar 

  • Kim S, Traore YL, Ho EA, Shafiq M, Kim SH, Liu S (2018b) Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta Biomater 82:12–23

    Article  CAS  PubMed  Google Scholar 

  • Kleiner LW, Wright JC, Wang Y (2014) Evolution of implantable and insertable drug delivery systems. J Control Release 181:1–10

    Article  CAS  PubMed  Google Scholar 

  • Koob TJ (2004) Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, New York, p 335

    Google Scholar 

  • Lee DH, Chan CK (2020) Modified insertion technique for a intravitreal implant (Ozurdex®). Am J Ophthalmol Case Rep 19:100725

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10(9):4033–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Maghsoudi K, Jafari R, Momen G, Farzaneh M (2017) Micro-nanostructured polymer surfaces using injection molding: a review. Mater Today Commun 13:126–143

    Article  CAS  Google Scholar 

  • Malcolm RK, Fetherston SM, McCoy CF, Boyd P, Major I (2012) Vaginal rings for delivery of HIV microbicides. Int J Women’s Health 4:595–605

    Article  Google Scholar 

  • Malcolm RK, Boyd PJ, McCoy CF, Murphy DJ (2015) Microbicide vaginal rings: technological challenges and clinical development. Adv Drug Deliv Rev 103:33–56

    Article  Google Scholar 

  • Maniruzzaman M, Nokhodchi A (2016) Advanced implantable drug delivery systems via continuous manufacturing. Crit Rev Ther Drug Carrier Syst 33(6):569–589

    Article  PubMed  Google Scholar 

  • Martín del Valle EM, Galan MA, Carbonell RG (2009) Drug delivery technologies: the way forward in the new decade. Ind Eng Chem Res 48(5):2475–2486

    Article  Google Scholar 

  • Matschuk M, Larsen NB (2012) Injection molding of high aspect ratio sub −100 nm nanostructures. J Micromech Microeng 23(2):025003

    Article  Google Scholar 

  • Matschuk M, Bruus H, Larsen NB (2010) Nanostructures for all-polymer microfluidic systems. Microelectron Eng 87(5):1379–1382

    Article  CAS  Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27

    Article  CAS  PubMed  Google Scholar 

  • Mekaru H, Yamada T, Yan S, Hattori T (2004) Microfabrication by hot embossing and injection molding at LASTI. Microsyst Technol 10:682

    Article  CAS  Google Scholar 

  • Melocchi A (2014) Injection molding/micromolding applications to drug delivery, Doctoral dissertation. University of Milan, pp 8–30

    Google Scholar 

  • Mesquita L, Galante J, Nunes R, Sarmento B, Neves J (2019) Pharmaceutical vehicles for vaginal and rectal administration of anti-HIV microbicide nanosystems. Pharmaceutics 11(3):1–20

    Article  Google Scholar 

  • Mitchell GR, Carreira P, Gomes S, Mateus A, Mohan S (2017) Morphology development during micro injection moulding of thermoplastics. Procedia Manufact 12:230–241

    Article  Google Scholar 

  • Mohammadpour F, Hadizadeh F, Tafaghodi M, Sadri K, Mohammadpour AH, Kalani MR et al (2019) Preparation, in vitro and in vivo evaluation of PLGA/chitosan based nanocomplex as a novel insulin delivery formulation. Int J Pharm 572:118710

    Article  CAS  PubMed  Google Scholar 

  • Novak A, De la Loge C, Abetz L, Van der Meulen E (2003) The combined contraceptive vaginal ring, NuvaRing®: an international study of user acceptability. Contraception 67(3):187–194

    Article  CAS  PubMed  Google Scholar 

  • Ordikhani F, Arslan ME, Marcelo R, Sahin I, Grigsby P, Schwarz J et al (2016) Drug delivery approaches for the treatment of cervical cancer. Pharmaceutics 8(23):1–15

    Google Scholar 

  • Ormiston JA, Serruys PW (2009) Bioabsorbable coronary stents. Circ Cardiovasc Interventions 2(3):255–260

    Article  CAS  Google Scholar 

  • Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A (2021) Recent advances in polymer-based vaginal drug delivery systems. Pharmaceutics 13(6):1–49

    Article  Google Scholar 

  • Osswald T, Turng LS, Gramann P (2008) Injection molding handbook, 2nd edn. Carl Hanser, Munich

    Google Scholar 

  • Ostojic MC, Perisic Z, Sagic D, Jung R, Zhang Y-L, Bendrick-Peart J et al (2011) The pharmacokinetics of Biolimus A9 after elution from the BioMatrix II stent in patients with coronary artery disease: the stealth PK study. Eur J Clin Pharmacol 67:389–398

    Article  CAS  PubMed  Google Scholar 

  • Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Carine T et al (2021) Promising drug delivery approaches to treat microbial infections in the vagina: a recent update. Polymers 13(26):1–65

    Google Scholar 

  • Papautsky I, Peterson ETK (2008) Micromolding. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York, pp 1256–1267

    Chapter  Google Scholar 

  • Park S, Lee W, Moon S, Yoo Y, Cho Y (2011) Injection molding micro patterns with high aspect ratio using a polymeric flexible stamper. eXPRESSPolym Lett 5(11):950–958

    Article  CAS  Google Scholar 

  • Patel CM, Patel MA, Patel NP, Prajapati P, Patel C (2010) Poly lactic glycolic acid (PLGA) as biodegradable polymer. Res J Pharmacy Technol 3:353–360

    CAS  Google Scholar 

  • Perry J, Chambers A, Spithoff K, Laperriere N (2007) Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol 14:189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizzi M, De Martiis O, Grasso V (2004) Fabrication of self assembled micro reservoirs for controlled drug release. Biomed Microdevices 6(2):155–158

    Article  CAS  PubMed  Google Scholar 

  • Primorac M, Đorđević L, Vasiljević D (2005) Characteristics of novel pharmaceutical preparations for hormone replacement therapy in menopause/Karakteristike savremenih farmaceutskih preparata za terapijsku supstituciju hormona u menopauzi. Arh Farm 55:131–147

    Google Scholar 

  • Quinten T, De Beer T, Vervaet C, Remon JP (2009) Evaluation of injection moulding as a pharmaceutical technology to produce matrix tablets. Eur J Pharm Biopharm 71:145–154

    Article  CAS  PubMed  Google Scholar 

  • Quinten T, De Beer T, Onofre FO, Mendez-Montealvo G, Wang YJ, Remon JP, Vervaet C (2011) Sustained-release and swelling characteristics of xanthan gum/ethylcellulose-based injection moulded matrix tablets: in vitro and in vivo evaluation. J Pharm Sci 100:2858–2870

    Article  CAS  PubMed  Google Scholar 

  • Rafiei F, Tabesh H, Farzad S, Farzaneh F, Rezaei M, Hosseinzade F et al (2021) Development of hormonal intravaginal rings: technology and challenges. Geburtsh Frauenheilk 81:789–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathbone MJ, Bunt CR, Ogle CR, Burggraaf S, Macmillan KL, Pickering K (2002) Development of an injection molded poly(ε-caprolactone) intravaginal insert for the delivery of progesterone to cattle. J Control Release 85:61–71

    Article  CAS  PubMed  Google Scholar 

  • Rohloff CM, Alessi TR, Yang B, Dahms J, Carr JP, Lautenbach SD (2008) DUROS® technology delivers peptides and proteins at consistent rate continuously for 3 to 12 months. J Diabetes Sci Technol 2(3):461–467

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothen-Weinhold A, Besseghir K, Vuaridel E, Sublet E, Oudry N, Kubel F, Gurny R (1999) Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants. Eur J Pharm Biopharm 48:113–121

    Article  CAS  PubMed  Google Scholar 

  • Rotting O, Ropke W, Becker H, Gartner C (2002) Polymer microfabrication technologies. Microsyst Technol 8:36–32

    Article  Google Scholar 

  • Rudnick JD, Sarmiento JM, Uy B, Nuno M, Wheeler CJ, Mazer MJ, Wang H, Hua JL, Chu RM, Phuphanich S, Black KL, Yu JS (2020) A phase I trial of surgical resection with Gliadel Wafer placement followed by vaccination with dendritic cells pulsed with tumor lysate for patients with malignant glioma. J Clin Neurosci 74:187–193

    Article  PubMed  Google Scholar 

  • Shiah JG, Bhagat R, Blanda WM, Nivaggioli T, Peng L, Chou D, Weber DA (2011) Ocular implant made by a double extrusion process. French patent CA2576392 C 2011, July 12

    Google Scholar 

  • Tadmor Z, Gogos CG (2006) Principles of polymer processing. Wiley, Hoboken, NJ

    Google Scholar 

  • Timmer CJ, Mulders TMT (2000) Pharmacokinetics of etonogestrel and ethinylestradiol released from a combined contraceptive vaginal ring. Clin Pharmacokinet 39:233–242

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Boyd P, Hunter A, Malcolm RK (2018) Intravaginal rings for continuous low-dose administration of cervical ripening agents. Int J Pharm 549:124–132

    Article  CAS  PubMed  Google Scholar 

  • Weerakoon-Ratnayake KM, O’Neil CE, Uba FI, Soper SA (2017) Thermoplastic nanofluidic devices for biomedical applications. Lab Chip 17:362–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neurooncology 5:79–88

    CAS  Google Scholar 

  • Westphal M, Ram Z, Riddle V, Hilt D, Bortey E (2006) Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir 148:269–275. (discussion 275)

    Article  CAS  PubMed  Google Scholar 

  • Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159:14–26

    Article  CAS  PubMed  Google Scholar 

  • Wright JC, Leonard ST, Stevenson CL, Beck JC, Chen G, Jao RM, Johnson PA, Leonard J, Skowronski RJ (2001) An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J Control Release 75(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Johnson R, Yum S (2003) DUROS® osmotic pharmaceutical systems for parenteral & site-directed therapy. Drug Deliv Technol 3(1):64–73

    CAS  Google Scholar 

  • Wu J, Gu M (2011) Microfluidic sensing: state of the art fabrication and detection techniques. J Biomed 16:080901

    Google Scholar 

  • Yao D (2008) Micromolding of polymers. In: Thomas S, Weimin Y (eds) Advances in polymer processing - from macro to nano scales. CRC Press, Washington, pp 552–578

    Google Scholar 

  • Zema L, Loreti G, Melocchi A, Maroni A, Gazzaniga AA (2012) Injection molding and its application to drug delivery. J Control Release 159:324–331

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Davis DA, Aboul Fotouh K, Wang J, Williams D, Bhambhani A et al (2021) Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 172:183–210

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Vranić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vranić, E. (2023). Micro-molding and Its Application to Drug Delivery. In: Lamprou, D. (eds) Nano- and Microfabrication Techniques in Drug Delivery . Advanced Clinical Pharmacy - Research, Development and Practical Applications, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-26908-0_11

Download citation

Publish with us

Policies and ethics