Skip to main content

Clinical Features

  • Chapter
  • First Online:
Pediatric Overweight and Obesity
  • 195 Accesses

Abstract

Firstly, it is described that the relational aspects with the patient and his/her parents or companions should be maintained during the clinical follow-up. Then, specific aspects of the anamnesis and examination, anthropometry, and fixed scrutiny, respectively, are considered as basic points in this protracted course. Next, the clinical picture of pediatric obesity is described but considering the aspects that are influenced by obesity: puberty and associated disorders, sleep, stigma, and musculoskeletal alterations. Comorbidities are dealt with in the following chapter. Finally, we analyze complementary determinations: biochemical, genetic, diagnostic imaging, and physical activity assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kakinami L, Henderson M, Chiolero A, Cole T, Paradis G. Identifying the best body mass index metric to assess adiposity change in children. Arch Dis Child. 2014;99:1020–4.

    Article  PubMed  Google Scholar 

  2. Ashwell M, Gibson S. A proposal for a primary screening tool: 'Keep your waist circumference to less than half your height'. BMC Med. 2014;207:207–14.

    Article  Google Scholar 

  3. Tester JM, Phan TP, Tucker JM, Leung CW, Gillete ML, Sweeny BR. Characteristics of children 2 to 5 years of age with severe obesity. Pediatrics. 2018;141(3):e20173228. https://doi.org/10.1542/peds.2017.3228.

    Article  PubMed  Google Scholar 

  4. Dietz WH. Time to adopt new measures of severe obesity in children and adolescents. Pediatrics. 2018;140:e20172148.

    Article  Google Scholar 

  5. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roy SM, Spivack JG, Faith MS, Chesi A, Mitchel JA, Kelly A. Infant BMI or weight-for-length and obesity risk in early childhood. Pediatrics. 2016;137:e20153492.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Graves L, Garnet SP, Cowell CT, Baur LA, Ness A, Sattar N. Waist-to-height ratio and cardiometabolic risk factors in adolescence: findings from a prospective birth cohort. Pediatr Obes. 2013;9:327–38.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hughes AR, Sherriff A, Nes AR, Reilly JJ. Timing of adiposity rebound and adiposity in adolescence. Pediatrics. 2014;134:e1354–64.

    Article  PubMed  Google Scholar 

  9. Kushner RF, Batsis JA, Butsch WC, Davis N, Golden A, Halpern F. Weight history in clinical practice: the state of the science and future directions. Obesity (Silver Springs). 2020;281:9–17. https://doi.org/10.1002/oby.22642.

    Article  Google Scholar 

  10. Mei Z, Grummer-Strawn LM, Wang J, Thornton JC, Freedman DS, Dietz WH. Do skinfold measurement provide additional information to body mass index in the assessment of body fatness among children and adolescents. Pediatrics. 2007;119:e1306–13.

    Article  PubMed  Google Scholar 

  11. Gannon J, Pollock AJ, Allen DB, Kling PJ. A practical screening tool to predict early childhood obesity risk: examining a birth cohort. Clin Pediatr (Phila). 2021;60(3):178–83. https://doi.org/10.1177/0009922820971006.

    Article  PubMed  Google Scholar 

  12. Hotz C, Abdeirahman L. Simple methods to obtain food listing and portion size distribution estimates for use in semi-quantitative dietary assessment methods. PLoS One. 2019;14(10):e217379. https://doi.org/10.1371/journal.pone0217379.

    Article  Google Scholar 

  13. Bradley J, West-Sadler S, Foster E, Sommerville J, Allen R, Stephen AM. Feasibility of an estimated method using graduated utensils to estimate food portion size in infants aged 4 to18 months. PLoS One. 2018;13:e0197591.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rudolph H, Blüher S, Falkenberg C, Neel M, Körner A, Würz J. Perception of bodyweight status: a case control study of obese and lean children and adolescents and their parents. Obes Facts. 2010;3:1–6.

    Article  Google Scholar 

  15. Edwards NM, Pettingell S, Borowsky IW. Where perception meets reality: self-perception of weight in overweight adolescents. Pediatrics. 2010;125:e452–8.

    Article  PubMed  Google Scholar 

  16. Huang JS, Becerra K, Oda T, Walker E, Xu R, Donohue M. Parental ability to discriminate the weight status of children: results of a survey. Pediatrics. 2007;120:e12–9.

    Article  Google Scholar 

  17. Miller AC, Polgreen LA, Segre EM, Polgreen PM. Variations in marginal taste perception by body mass index classification: a randomized controlled trial. J Acad Nutr Diet. 2020;120(1):45–52. https://doi.org/10.1016/j.jand.2019.05.018.

    Article  PubMed  Google Scholar 

  18. Gearhardt AN, Roberto CA, Seamans MJ, Corbin WR, Brownell KD. Preliminary validation of the Yale food addiction scale for children. Eat Behav. 2013;14:508–12.

    Article  PubMed  Google Scholar 

  19. Jebeile H, Kelly AS, O’Malley G, Baur LA. Obesity in children and adolescents: epidemiology, causes, assessment and management. Lancet Diabetes Endocrinol. 2022;10:351–65. https://doi.org/10.1016/s2213(22)00047-X.

  20. Nicholas MN, Keown-Stoneman CDG, Maguire JL, Drucker AM. Association between atopic dermatitis and height, body mass index, and Weight in children. JAMA Dermatol. 2022;158(1):26–32. https://doi.org/10.1001/jamadermatol.2021.4529.

    Article  PubMed  Google Scholar 

  21. Geva N, Pinhas-Hamiel O, Reichman B, Derazne E, Vivante A, Barak Y, et al. The association between obesity and secular trend of stature: a nationwide study of 2.8 million adolescents over five decades. Int J Obes. 2019;43:1932–9.

    Article  Google Scholar 

  22. Brix N, Ernst A, Lauridsen LLB, Parner ET, Arah OA, Olsen J. Childhood overweight and obesity and timing of puberty in boys and girls: cohort and sibling-matched analysis. Int J Epidemiol. 2020;49(3):834–44. https://doi.org/10.1093/Ije/dyaa056.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mathur R, Braunstein GD. Gynecomastia: pathomechanisms and treatment strategies. Horm Res. 1997;48:95–102.

    Article  CAS  PubMed  Google Scholar 

  24. Kanakis GA, Nordkap L, Bang AK, Calogero AE, Bartfai G, Corona G. EAA clinical practice guidelines–gynecomastia evaluation and management. Andrology 2019; 7(6): 778–793, doi: https://doi.org/10.1111/andr.12636.

  25. Henley DV, Lipson N, Korash KS, Bloch CA. Prepubertal gynecomastia linked to lavender and tea tree oils. N Engl J Med. 2007;356:479–85.

    Article  CAS  PubMed  Google Scholar 

  26. Rosner W, Auchus RJ, Azziz R, Sluss PM, Raff H. Utility, limitations and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocr Metab. 2007;92:405–13.

    Article  CAS  PubMed  Google Scholar 

  27. Van Eyck A, Verhulst S. Sleep-disordered breading and sleep duration in childhood obesity. In: Freemark MS, editor. Pediatric obesity: etiology, pathogenesis and treatment. 2nd ed. Springer International Publishing AG; 2018. p. 497–509.

    Chapter  Google Scholar 

  28. Guilleminault C, Eldridge FL, Simmons FB, Dement WC. Sleep apnea in eight children. Pediatrics. 1976;58:23–30.

    Article  CAS  PubMed  Google Scholar 

  29. Meltzer LJ, Johnson C, Crosette J, Ramos M, Mindell JA. Prevalence of diagnosed sleep disorders in pediatric primary care practices. Pediatrics. 2010;125:e1410–8.

    Article  PubMed  Google Scholar 

  30. Wing YK, Hui SH, Pak WM, Ho CK, Cheung A, Li AM. A controlled study of sleep related disordered breathing in obese children. Arch Dis Child. 2003;88:1043–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang SH, Keenan BT, Wiemken A, Zang Y, Staley B, Sarwer DB. Effect of Weight loss on upper airway anatomy and the apnea-hypopnea index. The importance of tongue fat. Am J Respir Crit Care Med. 2020;15:718–27. https://doi.org/10.1064/rccm.201903-0692OC.

    Article  Google Scholar 

  32. Lo Bru A, Salvaggio A, Insalaco G. Obstructive sleep apnea in developmental age. A narrative review. Of weight. Eur J Pediatr. 2020;79(3):357–65. https://doi.org/10.1007/s00431-019-03557-8.

    Article  CAS  Google Scholar 

  33. Huyett P. What is Snoring? JAMA Otolaringology-Head & Neck Surgery. 2023;149(3):286–87.

    Google Scholar 

  34. Nakra N, Bhargava S, Dzuira J, Caprio S, Bazzy-Asaad A. Sleep-disordered breathing in children with metabolic syndrome: the role of leptin and sympathetic nervous system activity and the effect of continuous positive airway pressure. Pediatrics. 2008;122:e634–42.

    Article  PubMed  Google Scholar 

  35. Mokhlesi B, Masa JF, Brozek JL, Gurubhagavatula I, Murphy PB, Piper AJ, et al. Evaluation and management of obesity hypoventilation syndrome. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med. 2019;200:e6–24.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bhattachariee R, Kheiandish-Gozal L, Spruyt K, Mitchell RB, Promchiarak J, Simakajornboon N. Adenotonsillectomy outcomes in the treatment of obstructive sleep apnea in children: a multicenter retrospective study. Am J Respir Crit Care Med. 2010;182:676–83.

    Article  Google Scholar 

  37. Abel F, Tan HL, Negro V, Bridges N, Carlisle T, Chan E. Hypoventilation disproportionate to OSAS severity in children with Prader-Willi syndrome. Arch Dis Child. 2019;104:166–71.

    Article  PubMed  Google Scholar 

  38. Sutherland K, Deane SA, Chan AS, Schwab RJ, Ng AT, Darendeiler MA. Comparative effects of two oral appliances on upper airway structure in obstructive sleep apnea. Sleep. 2011;34:469–77.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Patel SR, Hu FB. Short sleep duration and weight gain: a systematic review. Obesity. 2008;16:643–53.

    Article  PubMed  Google Scholar 

  40. Knutson KL, Van Cauter E, Rathouz PJ, DeLeire T, Lauderdale DS. Trends in the prevalence of short sleepers in the USA: 1975-2008. Sleep. 2010;33:37–45.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lauderdale DS, Knutson KL, Rathouz PJ, Yan LL, Hulley SB, Liu K. Cross-sectional and longitudinal association between objectively measured sleep duration and body mass index: the CARDIA sleep study. Am J Epidemiol. 2009;170:805–13.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang FN, Xie W, Wang Z. Effects of sleep duration on neurocognitive development in early adolescents in the USA: a propensity score matched, longitudinal, observational study. Lancet Child & Adolescent Health. 2022;6(10):705–12. https://doi.org/10.1016/S2352-4642(22)-188-2.

  43. Carter PJ, Taylor BJ, Williams SM, Taylor RW. Longitudinal analysis of sleep in relation to BMI and body fat in children: the FLAME study. BMJ. 2011;342:d2712.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Seegers V, Petit D, Falissard B, Vitaro F, Tremblay RE, Montplaisir J, Touchette E. Short sleep duration and body mass index: a prospective longitudinal study in preadolescence. Am J Epidemiol. 2011;173:621–9.

    Article  PubMed  Google Scholar 

  45. Seegers V, Touchette E, Dionne G, Petit D, Seguin J, Montplaisir J. Short persistent sleep duration is associated with poor receptive vocabulary in middle childhood. J Sleep Res. 2016;25:325–32.

    Article  PubMed  Google Scholar 

  46. Landhuis CE, Poulton R, Welch D, Hancox RJ. Childhood sleep time and long-term risk for obesity: a 32-year prospective birth cohort study. Pediatrics. 2008;122:995–60.

    Article  Google Scholar 

  47. Miller MA, Kruisbrink M, Wallace J, Ji C, Cappuccio FP. Sleep duration and incidence of obesity in infants, children and adolescents: a systematic review and meta-analysis of prospective studies. Sleep. 2018;41(4) https://doi.org/10.1093/sleep/zsy018.

  48. Iacomino G, Lauria F, Russo P, Marena P, Venezia A, Iannaccone N. Circulating miRNAs ser associated with sleep duration in children/adolescents: results of the I. Family Study. Experimental Physiol. 2020;105:347–56. https://doi.org/10.1113/EP088015.

    Article  CAS  Google Scholar 

  49. la Haye D, Dijkstra JK, Lubbers MJ, van Rijsewijk L. The dual role of friendship and antipathy relations in the marginalization of overweight children in their peer networks: the TRAILS study. PLoS One. 2017;12:e0178130.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Palad CJ, Siddharth Y, Stanford FC. Weight stigma and its impact on paediatric care. Curr Opin Endocrinol Diabetes Obes. 2019;26:19–24.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kyle TK, Stanford FC, Nadglowski JF. Addressing weight stigma and opening doors for a patient-centered approach to childhood obesity. Obesity. 2018;26:457–8.

    Article  PubMed  Google Scholar 

  52. Charlesworth TES, Banaji MR. Patterns of implicit and explicit attitudes: I long-term change and stability from 2007 to 2016. Psychol Sci. 2019;30:174–92.

    Article  PubMed  Google Scholar 

  53. Flint SW, Nobles J, Gately P, Sahota P. Weight stigma and discrimination: a call to the media; Association for the Study of obesity. Lancet Diabetes Endocrinol. 2018;6:169–70.

    Article  PubMed  Google Scholar 

  54. Kliem S, Puls HC, Hinz A, Kersting A, Brahler E, Hilbert A. Validation of a three-item short form of the modified Weight bias internalization scale (WBIS-3) in the German population. Obes Facts. 2020;13(6):560–71. https://doi.org/10.1159/000510923.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wood AC, Vainik U, Engelhardt LE, Briley DA, Grotzinger AD, Church JA, et al. Genetic overlap between executive functions and BMI in childhood. Am J Clin Nutr. 2019;110:814–22.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Staffieri JR. A study of social stereotype of body image in children. J Pers Soc Psychol. 1967;7:101–4.

    Article  CAS  PubMed  Google Scholar 

  57. Analitis F, Velderman MK, Ravens-Sieberer U, Detmar S, Erhart M, Herdman M. Being bullied: associated factors in children and adolescents 8 to 18 years old in 11 European countries. Pediatrics. 2009;123:569–77.

    Article  PubMed  Google Scholar 

  58. Pittet I, Berchtold A, Akre C, Michaud PA, Suris JC. Are adolescents with chronic conditions particularly at risk for bullying. Arch Dis Child. 2010;96:711–6.

    Article  Google Scholar 

  59. Lumeng J, Forrest P, Appugliese D, Kacirotin N, Corwyn RF, Bradley RH. Weight status as a predictor of being bullied in third to sixth grades. Pediatrics. 2010;125:1267–8.

    Article  Google Scholar 

  60. Puhl R, Peterson JL, Luedicke J, Weight-based victimization. Bullying experiences of weight loss treatment-seeking youth. Pediatrics. 2013;131:157–8.

    Article  Google Scholar 

  61. Griffiths LJ, Wolke D, Page AS, Horwood JP. Obesity and bullying: different effects for boys and girls. Arch Dis Child. 2006;91:121–5.

    Article  CAS  PubMed  Google Scholar 

  62. Franklin J, Denyer G, Steinbeck KS, Caterson ID, Hill AJ. Obesity and risk of low self-esteem: a statewide survey of Australian children. Pediatrics. 2006;118:2481–91.

    Article  PubMed  Google Scholar 

  63. Grünberg L, Eisenburger N, Ferrari N, Friesen D, Haas F. Klaudius M. Secular Trend of the Self-Concept in the Context of Childhood Obesity–Data fromfrom the CHILT III Programe, Cologne. Cologne. 2023;10(1):127–40. https://doi.org/10.3390/children10010127.

  64. Carrello J, Lung T, Killedar A, Baur LA, Hayes A. Relationship between obesity and school absenteeism in Australian children: implications for carer productivity. Obes Res Clin Pract. 2021;15:587. https://doi.org/10.1016/j.orcp.2021.09.006.

    Article  PubMed  Google Scholar 

  65. Strauss RS, Pollack HA. Social marginalization of overweight children. Arch Pediatr Adolesc. 2003;157:746–52.

    Article  Google Scholar 

  66. Zeller MH, Roehrig HR, Modi AC, Daniels SR, Inge TH. Health-related quality of life and depressive symptoms in adolescent s with extreme obesity presenting for bariatric surgery. Pediatrics. 2006;117:1155–63.

    Article  PubMed  Google Scholar 

  67. Birmaher B, Brent D, AACAP Work Group on Quality Issues, Bernet W, Bukstein O, Walter H, et al. Practice parameter for the assessment and treatment of children and adolescents with depressive disorders. J Am Acad Child Adolesc Psychiatry. 2007;46:1503–26.

    Article  PubMed  Google Scholar 

  68. Mackey EL, Wang J, Harrington C, Nadler EP. Psychiatric diagnoses and weight loss among adolescents receiving sleeve gastrectomy. Pediatrics. 2018;142:e20173432.

    Article  PubMed  Google Scholar 

  69. Perry DC, Metcalfe D, Lane S, Turner S. Childhood obesity and slipped capital femoral epiphysis. Pediatrics. 2018;142:e20181067.

    Article  PubMed  Google Scholar 

  70. Molina-García P, Migueles JH, Cárdenas-Sánchez C, Esteban-Cornejo I, Mora-González J, Rodriguez-Ayllon M, et al. A systematic review on biomechanical characteristics of walking in children and adolescents with overweight/obesity: possible implications for the development of musculoskeletal disorders. Obes Rev. 2019;20:1033–44.

    Article  PubMed  Google Scholar 

  71. Deere KC, Clinch J, Holliday K, McBeth J, Crawley EM, Sayewrs A. Obesity is a risk factor for musculoskeletal pain in adolescents: findings from a population-based cohort. Pain. 2012;153:1932–8.

    Article  PubMed  Google Scholar 

  72. Smith SM, Sumar B, Dixon KA. Musculoskeletal pain in overweight and obese children. Int J Obes. 2014;38:11–5.

    Article  CAS  Google Scholar 

  73. Kim N, Browning RC, Lerner Z. The effects of pediatric obesity on patellofemoral joint contact force during walking. Gait Posture. 2019;73:209–14.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fintini D, Cianfarani S, Cofini M, Andreoletti A, Ubertini GM, Manco M. The bones of children with obesity. Front Endocrinol. 2020;11:200. https://doi.org/10.3389/fendo.2020.00200.

    Article  Google Scholar 

  75. Hainsworth KR, Davies WH, Khan KA, Weisman SJ. Co-occurring chronic pain and obesity in children and adolescents: the impact on health-related quality of life. Clin J Pain. 2009;25:715–21.

    Article  PubMed  Google Scholar 

  76. Moya M. Vitamin D and calcium absorption and actions beyond. European Pediatric Association Newsletter. 2013;5 https://doi.org/10.11633/EPANL18.

  77. Turer CB, Lin H, Flores G. Prevalence of vitamin D deficiency among overweight and obese US children. Pediatrics. 2013;131:e152–61.

    Article  PubMed  Google Scholar 

  78. Durá-Travé T, Gallinas-Victoriano F, Chueca-Guidolain MJ, Berralde-Zubiri S. Prevalence of hypovitaminosis D and associated factors in obese Spanish children. Nutr Diabetes. 2017;7:e248.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ganz T. Anemia of inflammation. N Engl J Med. 2019;381:1148–57.

    Article  CAS  PubMed  Google Scholar 

  80. Justice AE, Kasaderi T, Highland HM, Young KL, Graff M, Lu Y, et al. Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat Genet. 2019;51:452–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fuavao K, Mhurchu CN, Swinburn B, Nosa V, Hall KD, Guo J. Twenty-four-hour urinary sodium and potassium excretion in children and young people: a systematic review and meta-analysis. Med Sci Forum. 2022;9:38. https://doi.org/10.3390/msf20220090038.

  82. Tsaban G, Meir AY, Zelicha H, Rinott E, Kaplan A, Shalev A. Diet-induced fasting ghrelin elevation reflects the recovery of insulin sensitivity and visceral adiposity regression. J Clin Endocr Metab. 2021;dgab681 https://doi.org/10.1210/dgab681.

  83. Choy KW. Next-generation sequencing to diagnose suspected genetic disorders. N Engl J Med. 2019;380:200–1.

    Article  PubMed  Google Scholar 

  84. Rushing A, Sommer EC, Zhao S, Po'e EK, Barkin SL. Salivary epigenetic biomarkers as predictors of emerging childhood obesity. BMC Med Genet. 2020;21:34. https://doi.org/10.1186/s12881-020-0968-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meng C, Yucheng T, Shu L, Yu Z. Effects of school- based high-intensity interval training on body composition, cardiorespiratory fitness and cardiometabolic markers in adolescent boys with obesity: a randomized controlled trial. BMC Pediatr. 2022;22:112. https://doi.org/10.1186/s12887-021-03079-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Higgins V, Omidi A, Tahmasebi H, Asgari S, Gordanifar K, Nieuwesteeg M. Marked influence of adiposity on laboratory biomarkers in a healthy cohort of children and adolescents. J Clin Endocrinol Metab. 2020;105(4):e1781–97. https://doi.org/10.1210/clinem/dgz.161.

    Article  PubMed  Google Scholar 

  87. Hardy ST, Sakhuja S, Jaeger BC, Urbina EM, Suglia SF, Feig DI. Trends in blood pressure and hypertension among US children and adolescents 1999-2018. JAMA Netw Open. 2021;4(4):e213917. https://doi.org/10.1001/jamanetworkopen.2021.3917.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yang L, Cao C, Kantor ED, Nguyen LH, Zheng X, Park Y, et al. Trends in sedentary behavior among the US population, 2001-2016. JAMA. 2019;321:1587–97.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Spartano NL, Davies-Ploude KL, Himali JJ, Anderson C, Pase MP, Maillard P, et al. Association of accelerometer-measured light-intensity physical activity with brain volume: the Framingham heart study. JAMA Netw Open. 2019;2:e192745.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Saint-Maurice PF, Troiano RP, Bassett DR, Graubard BI, Carlson SA, Shirona EJ. Association of Daily Step Count and Step Intensity with mortality among US adults. JAMA. 2020;323(12):1151–60. https://doi.org/10.1001/jama.2020.1382.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lee PH, Mcfarlane DJ, Lam TH, Stewart SM. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8:115.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Riddoch CJ, Leary SD, Ness AR, Blair SN, Deere K, Mattocks C. Prospective associations between objective measures of physical activity and fat mass in 12-14 year old children: the Avon longitudinal study of parents and children (ALSPAC). BMJ. 2009;339:b4544.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chomistek AK, Yuan C, Matthews CE, Troiano RP, Bowles HR, Rood J. Physical activity assessment with the ActiGraph GT3X and doubly labeled water. Med Sci Sport Exerc. 2017;49:1935–44.

    Article  Google Scholar 

  94. Centre for Disease Control and Prevention. More than a third of adults estimated to have prediabetes. available in: http://www.cdc.gov/media/releases/2011/p0126_diabetes.html

  95. Jayedi A, Soltani S, ZargarZargar SS, Khan TA, Sha-Bidar S. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020;370:m3324. https://doi.org/10.1136/bmj.m3324.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kindler JM, Lobene AJ, Vogel KA, Martin BR, McCabe LD, Peacock M. Adiposity, insulin resistance and bone mass in children and adolescents. J Clin Endocrinol Metab. 2019;104:892–9.

    Article  PubMed  Google Scholar 

  97. Müller G. Personalized prognosis and diagnosis of type 2 diabetes–vision or fiction? Pharmacology. 2010;85:168–87.

    Article  PubMed  Google Scholar 

  98. Lee S, Bacha F, Gungor N, Arslanian SA. Waist circumference is an independent predictor of insulin resistance in black and white youths. J Pediatr. 2006;148:188–94.

    Article  CAS  PubMed  Google Scholar 

  99. Woolcott OO, Bergman RN. Relative fat mass as an estimator of whole body fat percentage among children and adolescents: a cross-sectional study using NHAHES. Scientific Reports. 2019;9:15279. https://doi.org/10.1038/s41598-29362-1.

  100. Moya M, Pérez-Fernández V. Estimating trunk fat in children according to sex using basic somatic readings: an opportunity for improving evaluation among girls. BMC Pediatr. 2021;21:446. https://doi.org/10.1186/s12887-021-02918-3.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fernández JR, Reden DT, Pietrobelli A, Allison DB. Waist circumference percentiles in nationally representative samples of African-American, European-American and Mexican-American children and adolescents. J Pediatr. 2004;145:439–44.

    Article  PubMed  Google Scholar 

  102. Ujcic-Voortman JK, Bos G, Baan CA, Verhoeff AP, Seidell JC. Obesity and body fat distribution: ethnic differences and the role of socio-economic status. Obes Facts. 2011;4:53–60.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schwandt P, Kelishadi R, Haas GM. First reference curves of waist circumference for German children in comparison to international values: the PEP family heart study. World J Pediatr. 2008;4:259–66.

    Article  PubMed  Google Scholar 

  104. Lee K. Waist circumference percentile criteria for pediatric metabolic syndrome in Korean adolescents. Asia Pac J Nutr. 2008;17:422–8.

    Google Scholar 

  105. Argemí J, Moya M. Seinaptracker. An easy-to-run computer software programme for assessing growth and nutrition in pediatrics www.seinap.org

  106. Zhang Y, Zhao J, Chu Z. More attention should be paid to monitoring of abdominal obesity among children and adolescents. Ann Nutr Metab. 2016;69:212–4.

    Google Scholar 

  107. Kim DR, Lee MS, Lee JS, Choi GM, Kang KS. Ultrasonographic quantitative analysis of fatty pancreas in obese children: its correlation with metabolic syndrome and homeostasis model assessment of insulin resistance. J Pediatr. 2018;193:134–8.e1.

    Article  PubMed  Google Scholar 

  108. Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry in children aged 3-19 y. Am J Clin Nutr. 2000;72:490–5.

    Article  CAS  PubMed  Google Scholar 

  109. Browning JM, Mugridge O, Dixon AK, Aitken SW, Prentice AM, Jebb SA. Measuring abdominal adipose tissue: comparison of simpler methods with MRI. Obes Facts. 2011;4:9–11.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Vosseler A, Machann J, Fritsche L, Prystupa K, Kübler C, Häring HU. Interscapular fat is associated with impaired glucose tolerance and insulin resistance independent 0f visceral fat mass. Obesity (Silver Spring). 2022;30(11):2233–241. https://doi.org/10.1002/oby.23554.

  111. Shiel F, Persson C, Simas V, Furness J, Climstein M, Pope R. Reliability and precision of the NANA protocol to assess body composition using dual energy X-ray absorptiometry. Int J Sport Nutr Exerc Metab. 2018;28:19–25.

    Article  PubMed  Google Scholar 

  112. Moya M, Juste M, Cortés E, Carratalá F. Utilización del ácido linoleico conjugado (CLA) en el niño y adolescente obesos. Rev Esp Pediatr. 2007;63:453–7.

    Google Scholar 

  113. Whigham LD, Watras AC, Schoeller DA. Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. Am J Clin Nutr. 2007;85:1203–9.

    Article  CAS  PubMed  Google Scholar 

  114. Moya M, Juste M, Caturla J. Changes in adiposity estimated by dual energy X-ray attenuation (DXA) in obese patients. In: Advances in allergy, Asthma & Metabolism. Turin: Medimon International; 2010. p. 179–85.

    Google Scholar 

  115. Benoit SC, Clegg DJ, Seeley RJ, Woods SC. Insulin and leptin as adiposity signals. Recent Prog Horm Res. 2004;59:267–85.

    Article  CAS  PubMed  Google Scholar 

  116. Gloser Pediatric Research Network Obesity Study Group. Intraperitoneal fat and insulin resistance in obese adolescents. Obesity (Silver Springs). 2010;18:402–9.

    Article  Google Scholar 

  117. Raine LB, Khan RA, Drollette ES, Pontifex MB, Kramer AF, Hillman CH. Obesity, visceral adipose tissue and cognitive function in childhood. J Pediatr. 2017;187:134–40.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Carnell S, Benson L, Chang KV, Wang Z, Huo Y, Geliebter A. Neural correlates of familial obesity risk and overweight in adolescence. NeuroImage. 2017;159:236–47.

    Article  PubMed  Google Scholar 

  119. Freedman DS, Wang J, Thornton JC, Mei Z, Sopher AB, Pierson R. Classification of body fatness by body mass index for age categories among children. Arch Pediatr Adolesc Med. 2009;163:805–11.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Santos LC, Cintra IP, Fisberg M, Martini LA. Body trunk fat and insulin resistance in post pubertal obese adolescents. Sao Paulo Med J. 2008;126:82–6.

    Article  PubMed  Google Scholar 

  121. Lee S, Bacha F, Gungor N, Arslanian S. Comparison of different definitions of pediatrics metabolic syndrome: relation to abdominal adiposity insulin resistance, adiponectin and inflammatory biomarkers. J Pediatr. 2008;152:177–84.

    Article  CAS  PubMed  Google Scholar 

  122. Barba G, Troiano E, Russo P, Strazullo P, Siani A. Body mass, fat distribution and blood pressure in southern Italian children: results of the ARCA project. Nutr Metab Cardiovasc Dis. 2006;16:239–48.

    Article  PubMed  Google Scholar 

  123. El Taguri A, Dablas-Tyan M, Ricour C. Central obesity is the major risk factor for failure of obesity management during consolidation phase in children. Pediatrics. 2008;121(Suppl):S110–4.

    Article  Google Scholar 

  124. Slyper AH. Childhood obesity, adipose tissue distribution and the pediatric practitioner. Pediatrics. 2008 Jul;10e42:pe4. https://doi.org/10.1542/peds.102.1.

    Article  Google Scholar 

  125. Hanevold C, Waller J, Daniels S, Portman R, Sorof J, International Pediatric Hypertension Association. The effects of obesity, gender and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the international pediatric hypertension association. Pediatrics. 2004;113:328–33.

    Article  PubMed  Google Scholar 

  126. Ruipérez C, Juste M, Moya M. Alterations of left ventricular myocardial characteristics associated to obesity in children. Invest Nutr Alim Pediatr (Rev on line). 2008;6#:16. Available in: http://www.seinap.org

    Google Scholar 

  127. Slort KR, Blackett PR, Gardner AW, Copeland KC. Vascular health in children and adolescents: effects of obesity and diabetes. Vasc Health Risk Manag. 2009;5:973–90.

    Google Scholar 

  128. Denzer C, Thiere D, Muche R, Koenig W, Mayer H, Kratzer W. Gender-specific prevalences of fatty liver in obese children and adolescents: roles of body fat distribution, sex steroids and insulin resistance. J Clin Endocrinol Metab. 2009;94:3872–81.

    Article  CAS  PubMed  Google Scholar 

  129. Pang Y, Kartsonaki C, Ly J, Millwood IY, Fairhurst-Hunter Z, Turnbull I. Adiposity metabolomic biomarkers and risk of nonalcoholic fatty liver disease: a case-cohort study. Am J Clin Nutr. 2022;115:799–810. https://doi.org/10.1093/ajcn/nqab392.

    Article  PubMed  Google Scholar 

  130. Wong MC, Bennett JP, Leong LT, Tian IY, Liu YE, Kelly NN. Monitorimg body composition change for intervention studies with advancing 3D optical imaging technology in comparison to dual-energyX-ray absorptiometry. Am J Clin Nutr. 2023:s0002-9165(23):04152-7. https://doi.org/10.1016/j.ajcnut.2023.02.006.

  131. Natale S, Bradley J, Nguyen WH, Tran T, Ny P, La K. Pediatric obesity: pharmacokinetics alterations and effects on antimicrobial dosing. Pharmacotherapy. 2017;37:361–78.

    Article  CAS  PubMed  Google Scholar 

  132. Anderson BJ, Holford NHG. Getting the dose right for obese children. Arch Dis Child. 2017;102:54–5.

    Article  PubMed  Google Scholar 

  133. Kumar S, Mankowski RT, Anton SD, Balagopal PB. Novel insight on the role of spexin as a biomarmarker of obesity and related cardiometabolic disease. Int J Obesity (Lond). 2021;45(10):2169–78. https://doi.org/10.1038/s41366-021-00906-2.

    Article  Google Scholar 

  134. Mendes de Oliveira E, McKeogh JM, Talbot F, Henning E, Ahmed R, Perdikari A. Obesity -associated GNAS mutations and the Melanocortin pathway. N Engl J Med. 2021;385(17):1581–92. https://doi.org/10.1056/NEJMoa2103329.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Moya .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moya, M. (2023). Clinical Features. In: Pediatric Overweight and Obesity. Springer, Cham. https://doi.org/10.1007/978-3-031-26727-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26727-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26726-0

  • Online ISBN: 978-3-031-26727-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics