Skip to main content

Specific Packaging Reliability Testing

  • Chapter
  • First Online:
Interconnect Reliability in Advanced Memory Device Packaging

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 451 Accesses

Abstract

In the past 5 years, advanced Silicon node and packaging technology are significantly driven by the growing market on 5G applications, high performance computing (HPC), internet of thing (IoT) and electronics in autonomous vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPC/JEDEC-9702 Standard (2004) Monotonic bend characterization of board-level interconnects. JEDEC, June 2004

    Google Scholar 

  2. JEDEC JESD22-B111A, board level drop test method of components for handheld electronic products. JEDEC, July 2003

    Google Scholar 

  3. Caers JFJM, Zhao XJ, Wong EH, Seah SKW, Selvanayagam CS, van Driel WD, Owens N, Leoni M, Tan LC, Eu PL, Lai YS, Yeh CL (2010) A study of crack propagation in Pb-free solder joints under drop impact. IEEE Trans Electron Packag Manuf 33(2):84–90

    Article  Google Scholar 

  4. Zaal JJM, Hochstenbach HP, van Driel WD, Zhang GQ (2009) Solder interconnect reliability under drop impact loading conditions using high-speed cold bump pull. Microelectron Reliab 49(8):846–852

    Article  Google Scholar 

  5. Wong EH, Seah SKW, Shim VPW (2008) A review of board level solder joints for mobile applications. Microelectron Reliab 48(11–12):1747–1758

    Article  Google Scholar 

  6. SEMI G-86, Test method for measurement of chip (die) strength by mean of 3-point bending. SEMI, Aug. 2011

    Google Scholar 

  7. Tsai MY, Lin CS (2007) Testing and evaluation of silicon die strength. IEEE Trans Electron Packag Manuf 30(2):106–114

    Article  Google Scholar 

  8. Chen J, Liu V, Lin L, Chung M, Gan CL, Takiar H (2021) Effects of epoxy molding compound on managed NAND(mNAND) package strain enhancement. Int Conf Electron Packag (ICEP) 2021:131–132

    Google Scholar 

  9. Liu V, Arifeen S, Bassett C, Chung M, Gan C, Takiar H (2021) Mechanical suite of flexural bending method for electronic memory packages. IEEE Int Conf Sens Nanotechnol (SENNANO) 2021:45–49

    Article  Google Scholar 

  10. Che FX, Ong YC, Ng HW, Gan CL, Glancey C, Takiar H (2020) Study on package strength of uMCP (Multichip package) for mobile application through three-point bending test and simulation. In: 2020 IEEE 22nd electronics packaging technology conference (EPTC), pp 57–62

    Google Scholar 

  11. Nelson W (1985) Weibull analysis of reliability data with few or no failures. J Qual Technol 17:140–146

    Article  Google Scholar 

  12. Enkhmunkh N, Kim GW, Hwang K-J, Hyun S-H (2007) A parameter estimation of Weibull distribution for reliability assessment with limited failure data. In: 2007 international forum on strategic technology, pp 39–42. https://doi.org/10.1109/IFOST.2007.4798514

  13. Kim GW (Jan 2002) A study on the ‘Substation reliability assessment using Weibull distribution. Trans KIEE SIA(I):7–14

    Google Scholar 

  14. Li W (2002) Incorporating aging failures in power system reliability assessment evaluation. IEEE Trans Power Syst 17(3):918–923

    Article  Google Scholar 

  15. Peng K, Xu W, Qin Z, Feng L, Lai L, Koh W (2017) Reflow warpage induced interconnect gaps between package/PCB and PoP top/bottom packages. In: 2017 IEEE 67th electronic components and technology conference (ECTC), pp 1378–1383. https://doi.org/10.1109/ECTC.2017.281

  16. Peng K, Yang W, Lai L, Xu W, Feng L (2016) Dynamic warpage characterization and reflow soldering defects of BGA packages. In: 2016 IEEE 66th electronic components and technology conference (ECTC), pp 694–699. https://doi.org/10.1109/ECTC.2016.135

  17. Halvi AS, Ahn W, Agonafer D, Novotny S (2004) Simulation of PWB warpage during fabrication and due to reflow. In: The ninth intersociety conference on thermal and thermomechanical phenomena in electronic systems (IEEE Cat. No. 04CH37543), vol 2, pp 674–678

    Google Scholar 

  18. Chen CM, Gan CL, Zou YS, Chung MH, Takiar H (2020) Strain response of a semiconductor package during drop test and fast gating method by bend test. In: 2020 IEEE 22nd electronics packaging technology conference, EPTC 2020, vol 3, No c, pp 49–52

    Google Scholar 

  19. Chung S, Kwak JB (2020) Comparative study on reliability and advanced numerical analysis of BGA subjected to product-level drop impact test for portable electronics. Electron (Switz) 9(9):1–13

    Google Scholar 

  20. Kang TM, Lee YC, Bae BK, Song WS, Lee JS (2017) A study on the correlation between experiment and simulation board level drop test for SSD. In: 2017 18th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems, EuroSimE 2017, pp 1–6

    Google Scholar 

  21. Wang W, Robbins D, Glancey C (2016) Simulation model to predict failure cycles in board level drop test. In: Proceedings—electronic components and technology conference, pp 1886–1891

    Google Scholar 

  22. Che FX, Pang JHL (2015) Study on board-level drop impact reliability of Sn–Ag–Cu solder joint by considering strain rate dependent properties of solder. IEEE Trans Device Mater Reliab 15(2):181–190

    Article  Google Scholar 

  23. Zhang A (2014) High acceleration board level reliability drop test using dual mass shock amplifier. In: 2014 electronic components and technology conference, pp 1441–1448

    Google Scholar 

  24. Lou M, Zhou J, Wen L, Feng W, Lee J (2010) System level drop reliability method research for netbook memory module. In: Proceedings—2010 11th international conference on electronic packaging technology and high density packaging, ICEPT-HDP 2010, No 15, pp 1043–1048

    Google Scholar 

  25. JEDEC IPC-9704A, printed circuit assembly strain gage test guideline. JEDEC, Jan 2012

    Google Scholar 

  26. Holm G, Eric S, Martin B, Petra H, Kashi V, Frank K, Dirk B, Hans-Juergen E (2013) Experimental analyses of the mechanical reliability of advanced BEOL/fBEOL stacks regarding CPI loading. In: IEEE international reliability physics symposium proceedings 2013, 5C.1.1-5C.1.10

    Google Scholar 

  27. Silomon J, Gluch J, Clausner A, Zschech E (2021) Mechanical BEoL stability investigation at Cu-pillars under cyclic load. In: Proceedings of the international symposium on the physical and failure analysis of integrated circuits, IPFA

    Google Scholar 

  28. Silomon J, Gluch J, Clausner A, Paul J, Zschech E (2021) Crack identification in BEoL stacks using acoustic emission testing and nano x-ray computed tomography. Microelectron Reliab 121

    Google Scholar 

  29. Sart C, Garreignot S, Fiori VF, Kermarrec O, Moutin C, Tavernier C, Jaouen H (2015) Experimental and numerical investigations on Cu/low-k interconnect reliability during copper pillar shear test. In: Proceedings—electronic components and technology conference 2015, pp 1594–1598

    Google Scholar 

  30. Baumann RC (March 2001) Soft errors in advanced semiconductor devices—part I: the three radiation sources. IEEE Trans Device Mater Reliab 1(1)

    Google Scholar 

  31. Baumann RC (Sept 2005) Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans Device Mater Reliab 5(3)

    Google Scholar 

  32. Wilkinson J, Hareland S (Sept 2005) A cautionary tale of soft errors induced by SRAM packaging materials. IEEE Trans Device Mater Reliab 5(3)

    Google Scholar 

  33. Gedion M et al (Dec 2010) Monte Carlo simulations to evaluate the contribution of Si bulk interconnects and packaging to alpha-soft error rates in advanced technologies. IEEE Trans Nucl Sci 57(6)

    Google Scholar 

  34. Ziegler J. Interactions of ions with matter. www.srim.org

  35. Karnik T et al (April–June 2004) Characterization of soft errors caused by single event upsets in CMOS processes. IEEE Trans Dependable Secure Comput 1(2)

    Google Scholar 

  36. Kumar S et al (2013) Soft error issue and importance of low alpha solders for microelectronics packaging. Rev Adv Mater Sci 34(2):185–202

    Google Scholar 

  37. Narasimham B et al (2017) Influence of polonium diffusion at elevated temperature on the alpha emission rate and memory SER performance. In: IEEE international reliability physics symposium (IRPS)

    Google Scholar 

  38. Kobayashi H et al (2009) Alpha particle and neutron-induced soft error rates and scaling trends in SRAM. In: IEEE international reliability physics symposium

    Google Scholar 

  39. Gedion M et al (June 2011) Uranium and thorium contribution to soft error rate in advanced technologies. IEEE Trans Nucl Sci 58(3)

    Google Scholar 

  40. Kawasaki H, Clark BM, Nishino T, Gordon MS (2015) Energy dependent efficiency in low background alpha measurements and impacts on accurate alpha characterization. IEEE Trans Nucl Sci 62(6)

    Google Scholar 

  41. Wilkinson JD, Clark BM, Wong R, Slayman C, Carroll B, Gordon M, He Y, Lauzeral O, Lepla K, Marckmann J, McNally B, Roche P, Tucker M, Wu T (2011) Multicenter comparison of alpha particle measurements and methods typical of semiconductor processing. In: IRPS

    Google Scholar 

  42. Gordon MS, Heidel DF, Rodbell KP, Dwyer-McNally B (Dec 2009) An evaluation of an ultralow background alpha-particle detector. IEEE Trans Nucl Sci 56(6)

    Google Scholar 

  43. Mizutani A, Oguma K, Fujinami M (2013) Discrimination of low-alpha 210 lead for electronics material using isotope ratio measurement by ICP-QMS, J-STAGE. Radioisotopes 62(2):73–82

    Article  Google Scholar 

  44. Lee SK, Kang SY, Jang DY, Lee CH, Kang SM, Kang BH, Lee WG, Kim YK (2011) Comparison of new simple methods in fabricating ZnS(Ag) scintillators for detecting alpha particles. Prog Nucl Sci Technol 1:194–197

    Article  Google Scholar 

  45. Martinie S, Autran JL, Uznanski S, Roche P, Gasiot G, Munteanu D, Sauze S (2011) Alpha-particle induced soft-error rate in CMOS 130 nm SRAM. IEEE Trans Nucl Sci 58(3)

    Google Scholar 

  46. Ramarapu R, Wong R, Clark B, Shen T (2013) A study of temperature induced polonium diffusion on SRAM SER performance. IEEE-SCV SER workshop presentation

    Google Scholar 

  47. Mahatme NN, Bhuva B, Gaspard N, Assis T, Xu Y, Marcoux P, Vilchis M, Narasimham B, Shih A, Wen SJ, Wong R, Tam N, Shroff M, Koyoma S, Oates A (2015) Terrestrial SER characterization for nanoscale technologies: a comparative study. In: 2015 IEEE international reliability physics symposium

    Google Scholar 

  48. Fang YP, Oates AS (2016) Characterization of single bit and multiple cell soft error events in planar and FinFET SRAMs. In: IEEE Trans Device Mater Reliab 16(2)

    Google Scholar 

  49. Narasimham B, Gupta S, Reed D, Wang JK, Hendrickson N, Taufique H (2018) Scaling trends and bias dependence of the soft error rate of 16 nm and 7 nm FinFET SRAMs. In: 2018 IEEE international reliability physics symposium (IRPS)

    Google Scholar 

  50. Liu V, Chen CM, Chen J, Chung MH and Gan CL (2022) Study of robust package strength characterization of memory packages for handheld application, Memories - Materials, Devices, Circuits and Systems 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Leong, Gan .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gan, C.L., Huang, CY. (2023). Specific Packaging Reliability Testing. In: Interconnect Reliability in Advanced Memory Device Packaging. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-26708-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26708-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26707-9

  • Online ISBN: 978-3-031-26708-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics