Skip to main content

Cholesterol Absorption Inhibitors (Ezetimibe) and Bile Acid-Binding Resins (Colesevelam HCl) as Therapy for Dyslipidemia in Patients with Diabetes Mellitus

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 370 Accesses

Abstract

Beyond appropriate nutrition, physical activity, and management of other cardiovascular disease (CVD) risk factors, preventive cardiology often involves reducing low-density lipoprotein cholesterol (LDL-C) levels via lipid-lowering pharmacotherapies proven to reduce the risk of atherosclerotic CVD (ASCVD) and reduce the risk of future CVD events. Statins are the lipid-lowering pharmacotherapy of first choice to treat hypercholesterolemia in the vast majority of patients, including patients with diabetes mellitus. However, not all patients are able to achieve recommended LDL-C treatment goals with statins alone. Not all patients are able to tolerate higher doses of statin. Some patients are not able to tolerate any statin treatment. Non-statin lipid-lowering therapies include injectable proprotein convertase subtilisin kexin 9 inhibitors, as well as oral intestinal cholesterol absorption inhibitors, bile acid sequestrants, adenosine triphosphate citrate lyase inhibitors (i.e., bempedoic acid), fibrates, and niacin. This chapter focuses upon intestinal cholesterol inhibitors (i.e., ezetimibe) and bile acid sequestrants/resins (i.e., colesevelam HCl). Ezetimibe blocks the intestinal absorption of both biliary and dietary cholesterol by inhibiting intestinal sterol transporters. Ezetimibe is indicated as monotherapy and in combination with statins to lower LDL-C levels. Ezetimibe also lowers non-high-density lipoprotein (non-HDL) cholesterol, apolipoprotein B, triglycerides, and remnant-like particle cholesterol and modestly raises HDL-C levels. When combined with statins, ezetimibe may also lower C-reactive protein levels. Colesevelam HCl is another gastrointestinal-acting lipid-altering drug classified as a bile acid sequestrant (BAS). BAS (i.e., cholestyramine and colestipol) were among the first drugs approved for lowering cholesterol levels, and clinical outcome trials supported their efficacy in lowering cholesterol blood levels, as well as reducing adverse ASCVD events. Unfortunately, cholestyramine and colestipol were/are poorly tolerated due to gastrointestinal side effects (e.g., nausea, vomiting, intestinal bloating, constipation) and have substantial potential for drug interactions (i.e., impairment of concurrent drug intestinal absorption) that limit their clinical use. Colesevelam HCl was designed to be better tolerated, with less potential for drug interactions. In addition to their lipid effects, BAS also reduce glucose levels. Colesevelam HCl is indicated as a lipid-lowering and anti-diabetes mellitus pharmacotherapy agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7(4):304–83.

    Article  PubMed  Google Scholar 

  2. Bays HE. Adiposopathy, diabetes mellitus, and primary prevention of atherosclerotic coronary artery disease: treating "sick fat" through improving fat function with antidiabetes therapies. Am J Cardiol. 2012;110(9 Suppl):4B–12B.

    Article  PubMed  Google Scholar 

  3. Bays HE, Taub PR, Epstein E, Michos ED, Ferraro RA, Bailey AL, et al. Ten things to know about ten cardiovascular disease risk factors. Am J Prev Cardiol. 2021;5:100149.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

    Article  PubMed  Google Scholar 

  5. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2018.

    Google Scholar 

  6. American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S125–S50.

    Article  Google Scholar 

  7. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88.

    Article  PubMed  Google Scholar 

  8. Toth P, Henriksson KM, Palmer MK. Treatment patterns and LDL-C goal attainment in patients with diabetes: temporal trends analysis from National Health and Nutrition Examination Survey†. J Clin Lipidol. 2016;10(3):708.

    Article  Google Scholar 

  9. Morieri ML, Avogaro A, Fadini GP, the DARWIN-T2D Network of the Italian Diabetes Society. Cholesterol lowering therapies and achievement of targets for primary and secondary cardiovascular prevention in type 2 diabetes: unmet needs in a large population of outpatients at specialist clinics. Cardiovasc Diabetol. 2020;19(1):190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bays HE. "Sick fat," metabolic disease, and atherosclerosis. Am J Med. 2009;122(1 Suppl):S26–37.

    Article  CAS  PubMed  Google Scholar 

  11. Bays H. Ezetimibe. Expert Opin Investig Drugs. 2002;11(11):1587–604.

    Article  CAS  PubMed  Google Scholar 

  12. Bays HE, McCarthy W, Burridge K, Tondt J, Karjoo S, Christensen S, Ng J, Golden A, Davisson L, Richardson L. Obesity Algorithm eBook, presented by the Obesity Medicine Association. www.obesityalgorithm.org. 2021. https://obesitymedicine.org/obesity-algorithm/. Accessed 18 Sept 2021.

  13. Schade DS, Gonzales K, Kaminsky N, Adolphe A, Shey L, Eaton RP. Resolving the egg and cholesterol intake controversy: new clinical insights into cholesterol regulation by the liver and intestine. Endocr Pract. 2021;28(1):102–9.

    Article  PubMed  Google Scholar 

  14. Chang T-Y, Chang C. Ezetimibe blocks internalization of the NPC1L1/cholesterol complex. Cell Metab. 2008;7(6):469–71.

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi H, Kawamura M. Lowering LDL cholesterol, but not raising LDL receptor activity, by ezetimibe. J Clin Lipidol. 2013;7(6):632–6.

    Article  PubMed  Google Scholar 

  16. Lin X, Racette SB, Ma L, Wallendorf M, Ostlund RE. Ezetimibe increases endogenous cholesterol excretion in humans. Arterioscler Thromb Vasc Biol. 2017;37(5):990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol. 2011;73:239–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stitziel NO, MacRae CA. A clinical approach to inherited premature coronary artery disease. Circ Cardiovasc Genet. 2014;7(4):558–64.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pencina MJ, Pencina KM, Lloyd-Jones D, Catapano AL, Thanassoulis G, Sniderman AD. The expected 30-year benefits of early versus delayed primary prevention of cardiovascular disease by lipid lowering. Circulation. 2020;142(9):827–37.

    Article  PubMed  Google Scholar 

  20. Temel RE, Tang W, Ma Y, Rudel LL, Willingham MC, Ioannou YA, et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest. 2007;117(7):1968–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Howles PN, Hui DY, Editorial B. Physiological role of hepatic NPC1L1 in human cholesterol and lipoprotein metabolism: new perspectives and open questions. J Lipid Res. 2012;53(11):2253–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhan S, Tang M, Liu F, Xia P, Shu M, Wu X. Ezetimibe for the prevention of cardiovascular disease and all-cause mortality events. Cochrane Database Syst Rev. 2018;11:CD012502.

    PubMed  Google Scholar 

  23. Imagawa M, Takahashi S, Zenimaru Y, Kimura T, Suzuki J, Miyamori I, et al. Comparative reactivity of remnant-like lipoprotein particles (RLP) and low-density lipoprotein (LDL) to LDL receptor and VLDL receptor: effect of a high-dose statin on VLDL receptor expression. Clin Chim Acta. 2012;413(3–4):441–7.

    Article  CAS  PubMed  Google Scholar 

  24. Packard CJ, Boren J, Taskinen M-R. Causes and consequences of hypertriglyceridemia. Front Endocrinol. 2020;11:252.

    Article  Google Scholar 

  25. Descamps O, Tomassini JE, Lin J, Polis AB, Shah A, Brudi P, et al. Variability of the LDL-C lowering response to ezetimibe and ezetimibe + statin therapy in hypercholesterolemic patients. Atherosclerosis. 2015;240(2):482–9.

    Article  CAS  PubMed  Google Scholar 

  26. Descamps OS, De Sutter J, Guillaume M, Missault L. Where does the interplay between cholesterol absorption and synthesis in the context of statin and/or ezetimibe treatment stand today? Atherosclerosis. 2011;217(2):308–21.

    Article  CAS  PubMed  Google Scholar 

  27. Miettinen TA, Strandberg TE, Gylling H. Noncholesterol sterols and cholesterol lowering by long-term simvastatin treatment in coronary patients: relation to basal serum cholestanol. Arterioscler Thromb Vasc Biol. 2000;20(5):1340–6.

    Article  CAS  PubMed  Google Scholar 

  28. Stellaard F, von Bergmann K, Sudhop T, Lütjohann D. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies. J Steroid Biochem Mol Biol. 2017;169:111–22.

    Article  CAS  PubMed  Google Scholar 

  29. Wu WF, Wang QH, Zhang T, Mi SH, Liu Y, Wang LY. Gas chromatography analysis of serum cholesterol synthesis and absorption markers used to predict the efficacy of simvastatin in patients with coronary heart disease. Clin Biochem. 2013;46(12):993–8.

    Article  CAS  PubMed  Google Scholar 

  30. Masuda D, Yamashita S. Enhanced intestinal absorption of cholesterol along with increased chylomicron remnants for de novo progression of coronary stenosis. J Atheroscler Thromb. 2017;24(2):120–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB. Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467–94.

    Article  CAS  PubMed  Google Scholar 

  32. Lin YC, Lai TS, Wu HY, Chou YH, Chiang WC, Lin SL, et al. Effects and safety of statin and ezetimibe combination therapy in patients with chronic kidney disease: a systematic review and meta-analysis. Clin Pharmacol Ther. 2020;108(4):833–43.

    Article  CAS  PubMed  Google Scholar 

  33. Flock MR, Green MH, Kris-Etherton PM. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv Nutr. 2011;2(3):261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zein AA, Kaur R, Hussein TOK, Graf GA, Lee J-Y. ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochem Soc Trans. 2019;47(5):1259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ras RT, Geleijnse JM, Trautwein EA. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: a meta-analysis of randomised controlled studies. Br J Nutr. 2014;112(2):214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bastida JM, Giros ML, Benito R, Janusz K, Hernandez-Rivas JM, Gonzalez-Porras JR. Sitosterolemia: diagnosis, metabolic and hematological abnormalities, cardiovascular disease and management. Curr Med Chem. 2019;26(37):6766–75.

    Article  CAS  PubMed  Google Scholar 

  37. Tada H, Nomura A, Ogura M, Ikewaki K, Ishigaki Y, Inagaki K, et al. Diagnosis and management of sitosterolemia 2021. J Atheroscler Thromb. 2021;28(8):791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tada H, Nohara A, Inazu A, Sakuma N, Mabuchi H, Kawashiri MA. Sitosterolemia, hypercholesterolemia, and coronary artery disease. J Atheroscler Thromb. 2018;25(9):783–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kirkpatrick CF, Bolick JP, Kris-Etherton PM, Sikand G, Aspry KE, Soffer DE, et al. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J Clin Lipidol. 2019;13(5):689–711 e1.

    Article  PubMed  Google Scholar 

  40. Goldberg IJ, Ibrahim N, Bredefeld C, Foo S, Lim V, Gutman D, et al. Ketogenic diets, not for everyone. J Clin Lipidol. 2021;15(1):61–7.

    Article  PubMed  Google Scholar 

  41. Xydakis AM, Ballantyne CM. Role of non-high-density lipoprotein cholesterol in prevention of cardiovascular disease: updated evidence from clinical trials. Curr Opin Cardiol. 2003;18(6):503–9.

    Article  PubMed  Google Scholar 

  42. Expert Panel on Detection E. Treatment of high blood cholesterol in A. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486–97.

    Article  Google Scholar 

  43. Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ, Bornfeldt KE. Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes. 2020;69(4):508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simons L, Tonkon M, Masana L, Maccubbin D, Shah A, Lee M, et al. Effects of ezetimibe added to on-going statin therapy on the lipid profile of hypercholesterolemic patients with diabetes mellitus or metabolic syndrome. Curr Med Res Opin. 2004;20(9):1437–45.

    Article  CAS  PubMed  Google Scholar 

  45. Denke M, Pearson T, McBride P, Gazzara RA, Brady WE, Tershakovec AM. Ezetimibe added to ongoing statin therapy improves LDL-C goal attainment and lipid profile in patients with diabetes or metabolic syndrome. Diab Vasc Dis Res. 2006;3(2):93–102.

    Article  PubMed  Google Scholar 

  46. Sniderman AD. Apolipoprotein B versus non-high-density lipoprotein cholesterol: and the winner is. Circulation. 2005;112(22):3366–7.

    Article  PubMed  Google Scholar 

  47. Sniderman A, Langlois M, Cobbaert C. Update on apolipoprotein B. Curr Opin Lipidol. 2021;32(4):226–30.

    Article  CAS  PubMed  Google Scholar 

  48. Genest J, Frohlich J, Fodor G, McPherson R, Working Group on Hypercholesterolemia and Other Dyslipidemias. Recommendations for the management of dyslipidemia and the prevention of cardiovascular disease: summary of the 2003 update. Can Med Assoc J. 2003;169(9):921–4.

    Google Scholar 

  49. American Diabetes Association. Executive summary: standards of medical care in diabetes—2011. Diabetes Care. 2011;34(Suppl 1):S4–10.

    Google Scholar 

  50. Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. HDL and type 2 diabetes: the chicken or the egg? Diabetologia. 2021;64(9):1917–26.

    Article  CAS  PubMed  Google Scholar 

  51. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol. 2006;21(1):1–6.

    Article  PubMed  Google Scholar 

  52. Twickler TB, Dallinga-Thie GM, Cohn JS, Chapman MJ. Elevated remnant-like particle cholesterol concentration: a characteristic feature of the atherogenic lipoprotein phenotype. Circulation. 2004;109(16):1918–25.

    Article  CAS  PubMed  Google Scholar 

  53. Bays HE, Ose L, Fraser N, Tribble DL, Quinto K, Reyes R, et al. A multicenter, randomized, double-blind, placebo-controlled, factorial design study to evaluate the lipid-altering efficacy and safety profile of the ezetimibe/simvastatin tablet compared with ezetimibe and simvastatin monotherapy in patients with primary hypercholesterolemia. Clin Ther. 2004;26(11):1758–73.

    Article  CAS  PubMed  Google Scholar 

  54. Bays H, Conard S, Leiter LA, Bird S, Jensen E, Hanson ME, et al. Are post-treatment low-density lipoprotein subclass pattern analyses potentially misleading? Lipids Health Dis. 2010;9:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davidson MH, Ballantyne CM, Jacobson TA, Bittner VA, Braun LT, Brown AS, et al. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol. 2011;5(5):338–67.

    Article  PubMed  Google Scholar 

  56. Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  57. Bays HE, Neff D, Tomassini JE, Tershakovec AM. Ezetimibe: cholesterol lowering and beyond. Expert Rev Cardiovasc Ther. 2008;6(4):447–70.

    Article  CAS  PubMed  Google Scholar 

  58. Gagne C, Bays HE, Weiss SR, Mata P, Quinto K, Melino M, et al. Efficacy and safety of ezetimibe added to ongoing statin therapy for treatment of patients with primary hypercholesterolemia. Am J Cardiol. 2002;90(10):1084–91.

    Article  CAS  PubMed  Google Scholar 

  59. Leiter LA, Betteridge DJ, Farnier M, Guyton JR, Lin J, Shah A, et al. Lipid-altering efficacy and safety profile of combination therapy with ezetimibe/statin vs. statin monotherapy in patients with and without diabetes: an analysis of pooled data from 27 clinical trials. Diabetes Obes Metab. 2011;13(7):615–28.

    Article  CAS  PubMed  Google Scholar 

  60. Goldberg RB, Guyton JR, Mazzone T, Weinstock RS, Polis A, Edwards P, et al. Ezetimibe/simvastatin vs atorvastatin in patients with type 2 diabetes mellitus and hypercholesterolemia: the VYTAL study. Mayo Clin Proc. 2006;81(12):1579–88.

    Article  CAS  PubMed  Google Scholar 

  61. Feldman T, Ose L, Shah A, Zakson M, Meehan A, Johnson-Levonas AO, et al. Efficacy and safety of ezetimibe/simvastatin versus simvastatin monotherapy in hypercholesterolemic patients with metabolic syndrome. Metab Syndr Relat Disord. 2007;5(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  62. Conard S, Bays H, Leiter LA, Bird S, Lin J, Hanson ME, et al. Ezetimibe added to atorvastatin compared with doubling the atorvastatin dose in patients at high risk for coronary heart disease with diabetes mellitus, metabolic syndrome or neither. Diabetes Obes Metab. 2010;12(3):210–8.

    Article  CAS  PubMed  Google Scholar 

  63. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110(2):227–39.

    Article  PubMed  Google Scholar 

  64. Abate N, Catapano AL, Ballantyne CM, Davidson MH, Polis A, Smugar SS, et al. Effect of ezetimibe/simvastatin versus atorvastatin or rosuvastatin on modifying lipid profiles in patients with diabetes, metabolic syndrome, or neither: results of two subgroup analyses. J Clin Lipidol. 2008;2(2):91–105.

    Article  PubMed  Google Scholar 

  65. Fazio S, Guyton JR, Lin J, Tomassini JE, Shah A, Tershakovec AM. Long-term efficacy and safety of ezetimibe/simvastatin coadministered with extended-release niacin in hyperlipidaemic patients with diabetes or metabolic syndrome. Diabetes Obes Metab. 2010;12(11):983–93.

    Article  CAS  PubMed  Google Scholar 

  66. Gil-Extremera B, Mendez G, Zakson M, Meehan A, Shah A, Lin J, et al. Efficacy and safety of ezetimibe/simvastatin co-administered with fenofibrate in mixed hyperlipidemic patients with metabolic syndrome. Metab Syndr Relat Disord. 2007;5(4):305–14.

    Article  CAS  PubMed  Google Scholar 

  67. Nabi R, Alvi SS, Shah A, Chaturvedi CP, Faisal M, Alatar AA, et al. Ezetimibe attenuates experimental diabetes and renal pathologies via targeting the advanced glycation, oxidative stress and AGE-RAGE signalling in rats. Arch Physiol Biochem. 2021:1–16.

    Google Scholar 

  68. Lee YB, Kim B, Han K, Kim JA, Roh E, Hong SH, et al. Combination of statin and ezetimibe versus statin monotherapy on cardiovascular disease and type 2 diabetes incidence among adults with impaired fasting glucose: a propensity-matched nationwide cohort study. J Lipid Atheroscler. 2021;10(3):303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kao YC, Chen TH, Liu CH, Hwang JS, Hsiao CC, Lin YS, et al. Similar major cardiovascular outcomes between pure statin and ezetimibe-statin in comparable intensity for type 2 diabetes with extremely atherosclerotic risks. Sci Rep. 2021;11(1):6697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fujisue K, Yamanaga K, Nagamatsu S, Shimomura H, Yamashita T, Nakao K, et al. Effects of statin plus ezetimibe on coronary plaques in acute coronary syndrome patients with diabetes mellitus: sub-analysis of PRECISE-IVUS trial. J Atheroscler Thromb. 2021;28(2):181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fras Z, Mikhailidis DP. Have we learnt all from IMPROVE-IT? Part I. Core results and subanalyses on the effects of ezetimibe added to statin therapy related to age, gender and selected chronic diseases (kidney disease, diabetes mellitus and non-alcoholic fatty liver disease). Curr Vasc Pharmacol. 2021;19(5):451–68.

    Article  CAS  PubMed  Google Scholar 

  72. Bays HE, Baum SJ, Brinton EA, Plutzky J, Hanselman JC, Teng R, et al. Effect of bempedoic acid plus ezetimibe fixed-dose combination vs ezetimibe or placebo on low-density lipoprotein cholesterol in patients with type 2 diabetes and hypercholesterolemia not treated with statins. Am J Prev Cardiol. 2021;8:100278.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yamaguchi S, Oba K, Higa M, Arasaki O, Shimabukuro M. Age-dependent efficacy of ezetimibe for low-density lipoprotein cholesterol reduction in Japanese patients with or without type 2 diabetes mellitus. J Clin Med. 2020;9(6):1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee J, Hwang YC, Lee WJ, Won JC, Song KH, Park CY, et al. Comparison of the efficacy and safety of rosuvastatin/ezetimibe combination therapy and rosuvastatin monotherapy on lipoprotein in patients with type 2 diabetes: multicenter randomized controlled study. Diabetes Ther. 2020;11(4):859–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chiu SW, Pratt CM, Feinn R, Chatterjee S. Proprotein convertase subtilisin/kexin type 9 inhibitors and ezetimibe on risk of new-onset diabetes: a systematic review and meta-analysis of large, double-blinded randomized controlled trials. J Cardiovasc Pharmacol Ther. 2020;25(5):409–17.

    Article  CAS  PubMed  Google Scholar 

  76. Miao XY, Liu HZ, Jin MM, Sun BR, Tian H, Li J, et al. A comparative meta-analysis of the efficacy of statin-ezetimibe co-therapy versus statin monotherapy in reducing cardiovascular and cerebrovascular adverse events in patients with type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci. 2019;23(5):2302–10.

    PubMed  Google Scholar 

  77. Hwang YC, Jun JE, Jeong IK, Ahn KJ, Chung HY. Comparison of the efficacy of rosuvastatin monotherapy 20 mg with rosuvastatin 5 mg and ezetimibe 10 mg combination therapy on lipid parameters in patients with type 2 diabetes mellitus. Diabetes Metab J. 2019;43(5):582–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang Z, Li Q, Ye W, Zhang Q, Li X. Efficacy and safety of ezetimibe in combination with atorvastatin for acute coronary syndrome patients accompanied with type 2 diabetes: a single-center, non-randomized cohort study. Chem Pharm Bull(Tokyo). 2019;67(5):419–25.

    Article  CAS  PubMed  Google Scholar 

  79. Arbel R, Hammerman A, Azuri J. Usefulness of ezetimibe versus evolocumab as add-on therapy for secondary prevention of cardiovascular events in patients with type 2 diabetes mellitus. Am J Cardiol. 2019;123(8):1273–6.

    Article  CAS  PubMed  Google Scholar 

  80. Lee YH, Hong N, Lee CJ, Park SH, Lee BW, Cha BS, et al. Differential association of ezetimibe-simvastatin combination with major adverse cardiovascular events in patients with or without diabetes: a retrospective propensity score-matched cohort study. Sci Rep. 2018;8(1):11925.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hong N, Lee YH, Tsujita K, Gonzalez JA, Kramer CM, Kovarnik T, et al. Comparison of the effects of ezetimibe-statin combination therapy on major adverse cardiovascular events in patients with and without diabetes: a meta-analysis. Endocrinol Metab (Seoul). 2018;33(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  82. Giugliano RP, Cannon CP, Blazing MA, Nicolau JC, Corbalán R, Špinar J, et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (improved reduction of outcomes: vytorin efficacy international trial). Circulation. 2018;137(15):1571–82.

    Article  CAS  PubMed  Google Scholar 

  83. Wang J, Ai XB, Wang F, Zou YW, Li L, Yi XL. Efficacy of ezetimibe combined with atorvastatin in the treatment of carotid artery plaque in patients with type 2 diabetes mellitus complicated with coronary heart disease. Int Angiol. 2017;36(5):467–73.

    Article  PubMed  Google Scholar 

  84. Tsai IF, Kuo CP, Lin AB, Chien MN, Ho HT, Wei TY, et al. Potential effect of ezetimibe against Mycobacterium tuberculosis infection in type II diabetes. Respirology. 2017;22(3):559–66.

    Article  PubMed  Google Scholar 

  85. Shinnakasu A, Yamamoto K, Kurano M, Arimura H, Arimura A, Kikuti A, et al. The combination therapy of fenofibrate and ezetimibe improved lipid profile and vascular function compared with statins in patients with type 2 diabetes. J Atheroscler Thromb. 2017;24(7):735–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sakamoto K, Kawamura M, Watanabe T, Ashidate K, Kohro T, Tanaka A, et al. Effect of ezetimibe add-on therapy over 52 weeks extension analysis of prospective randomized trial (RESEARCH study) in type 2 diabetes subjects. Lipids Health Dis. 2017;16(1):122.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kurozumi A, Okada Y, Mori H, Kobayashi T, Masuda D, Yamashita S, et al. Detrimental effects of high-fat diet loading on vascular endothelial function and therapeutic efficacy of ezetimibe and statins in patients with type 2 diabetes. Endocr J. 2016;63(5):431–40.

    Article  CAS  PubMed  Google Scholar 

  88. Barkas F, Elisaf M, Liberopoulos E, Klouras E, Liamis G, Rizos EC. Statin therapy with or without ezetimibe and the progression to diabetes. J Clin Lipidol. 2016;10(2):306–13.

    Article  PubMed  Google Scholar 

  89. Bays H, Dujovne C. Colesevelam HCl: a non-systemic lipid-altering drug. Expert Opin Pharmacother. 2003;4(5):779–90.

    PubMed  Google Scholar 

  90. Pavlou P, Koutroukas V, Lissett C, Smith JC. Colesevelam-induced hypoglycaemia in a patient with type 1 diabetes mellitus. Clin Case Rep. 2021;9(10):e04830.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kalra S, Priya G, Aggarwal S. Colesevelam in the management of type 2 diabetes. J Pak Med Assoc. 2020;70(5):934–6.

    PubMed  Google Scholar 

  92. Nerild HH, Christensen MB, Knop FK, Brønden A. Preclinical discovery and development of colesevelam for the treatment of type 2 diabetes. Expert Opin Drug Discovery. 2018;13(12):1161–7.

    Article  CAS  Google Scholar 

  93. Brunetti L, DeSantis EH. Patient tolerance and acceptance of colesevelam hydrochloride: focus on type-2 diabetes mellitus. P T. 2015;40(1):62–7.

    PubMed  PubMed Central  Google Scholar 

  94. Report of the National Cholesterol Education Program Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults. The expert panel. Arch Intern Med. 1988;148(1):36–69.

    Google Scholar 

  95. The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. JAMA. 1984;251(3):351–64.

    Google Scholar 

  96. Brensike JF, Levy RI, Kelsey SF, Passamani ER, Richardson JM, Loh IK, et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI type II coronary intervention study. Circulation. 1984;69(2):313–24.

    Article  CAS  PubMed  Google Scholar 

  97. Blankenhorn DH, Johnson RL, Nessim SA, Azen SP, Sanmarco ME, Selzer RH. The cholesterol lowering atherosclerosis study (CLAS): design, methods, and baseline results. Control Clin Trials. 1987;8(4):356–87.

    Article  CAS  PubMed  Google Scholar 

  98. Cashin-Hemphill L, Mack WJ, Pogoda JM, Sanmarco ME, Azen SP, Blankenhorn DH. Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up. JAMA. 1990;264(23):3013–7.

    Article  CAS  PubMed  Google Scholar 

  99. Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin J-T, Kaplan C, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323(19):1289–98.

    Article  CAS  PubMed  Google Scholar 

  100. Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA. 1990;264(23):3007–12.

    Article  CAS  PubMed  Google Scholar 

  101. Watts GF, Lewis B, Brunt JN, Lewis ES, Coltart DJ, Smith LD, et al. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas’ atherosclerosis regression study (STARS). Lancet. 1992;339(8793):563–9.

    Article  CAS  PubMed  Google Scholar 

  102. Bays HE, Goldberg RB. The ‘forgotten’ bile acid sequestrants: is now a good time to remember? Am J Ther. 2007;14(6):567–80.

    Article  PubMed  Google Scholar 

  103. Flores V, Martínez-Lozano H, Bighelli F, Orcajo J, García-Lledó J, Alonso-Farto JC, et al. Prevalence of biliary acid malabsorption in patients with chronic diarrhoea of functional characteristics: a prospective study. BMC Gastroenterol. 2021;21(1):56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ruiz-Campos L, Gisbert JP, Ysamat M, Arau B, Loras C, Esteve M, et al. Systematic review with meta-analysis: the prevalence of bile acid malabsorption and response to colestyramine in patients with chronic watery diarrhoea and previous cholecystectomy. Aliment Pharmacol Ther. 2019;49(3):242–50.

    Article  PubMed  Google Scholar 

  105. Bays HE, Maki KC, Schmitz K. Colesevelam hydrochloride powder for oral suspension versus cholestyramine powder for oral suspension: comparison of acceptability and tolerability. Endocr Pract. 2011;17(2):218–25.

    Article  PubMed  Google Scholar 

  106. Bays HE, Davidson M, Jones MR, Abby SL. Effects of colesevelam hydrochloride on low-density lipoprotein cholesterol and high-sensitivity C-reactive protein when added to statins in patients with hypercholesterolemia. Am J Cardiol. 2006;97(8):1198–205.

    Article  CAS  PubMed  Google Scholar 

  107. Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med. 1994;121(6):416–22.

    Article  CAS  PubMed  Google Scholar 

  108. Yamakawa T, Takano T, Utsunomiya H, Kadonosono K, Okamura A. Effect of colestimide therapy for glycemic control in type 2 diabetes mellitus with hypercholesterolemia. Endocr J. 2007;54(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  109. Zieve FJ, Kalin MF, Schwartz SL, Jones MR, Bailey WL. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther. 2007;29(1):74–83.

    Article  CAS  PubMed  Google Scholar 

  110. Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med. 2008;168(18):1975–83.

    Article  CAS  PubMed  Google Scholar 

  111. Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med. 2008;168(14):1531–40.

    Article  CAS  PubMed  Google Scholar 

  112. Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31(8):1479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bays H. Statin safety: an overview and assessment of the data—2005. Am J Cardiol. 2006;97(8A):6C–26C.

    Article  CAS  PubMed  Google Scholar 

  114. Bays H, Rhyne J, Abby S, Lai YL, Jones M. Lipid-lowering effects of colesevelam HCl in combination with ezetimibe. Curr Med Res Opin. 2006;22(11):2191–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bays, H.E. (2023). Cholesterol Absorption Inhibitors (Ezetimibe) and Bile Acid-Binding Resins (Colesevelam HCl) as Therapy for Dyslipidemia in Patients with Diabetes Mellitus. In: Jenkins, A.J., Toth, P.P. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-26681-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26681-2_26

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-26680-5

  • Online ISBN: 978-3-031-26681-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics