Skip to main content

Cholesterol Absorption Inhibitor Ezetimibe: Risk–Benefits and Role in Treating Dyslipidemias

  • Chapter
  • First Online:
Dyslipidemias

Abstract

Ezetimibe, a novel lipid-lowering compound, selectively inhibits intestinal cholesterol absorption by binding to Niemann-Pick C1-Like 1 (NPC1L1). Ezetimibe reduces the hepatic influx of cholesterol via chylomicron remnants, enhances the hepatic expression of low-density lipoproteins (LDL) receptor, and thus reducing LDL-cholesterol (LDL-C) levels. Ezetimibe also attenuates the development of atherosclerosis in various animal models. The administration of ezetimibe decreases the fasting levels of LDL-C in patients with primary hypercholesterolemia as well as plant sterols in patients with sitosterolemia. A significantly greater reduction in LDL-C levels is achieved in patients treated with ezetimibe plus statin combination compared with statin monotherapy.

Ezetimibe was reported to decrease fasting triglycerides (TG) levels as well as postprandial TG-rich lipoprotein and remnants significantly in patients with combined hyperlipidemia and those with hypertriglyceridemia (TG ≥ 150 mg/dl); however, its underlying mechanism of action on TG-rich lipoprotein metabolism has not yet been elucidated. Ezetimibe administration can attenuate postprandial hyperlipidemia by reducing the production of chylomicrons (CMs) from the small intestines and decreasing the absorption of free fatty acids (FFA).

More recently, ezetimibe has been reported to attenuate nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH) in animal models and humans. Since the influx of chylomicron remnants and FFA into the liver is decreased by ezetimibe, it is plausible that it may attenuate hepatic lipid deposition. The antiatherosclerotic effects of ezetimibe have been demonstrated in a variety of animal models and more recently in some clinical trials. In the recent Study of Heart and Renal Protection (SHARP) Trial, the combination of simvastatin and ezetimibe was shown to be effective for major atherosclerotic events in patients with chronic kidney disease. Taken together, ezetimibe may possess additional pleiotropic roles in addition to lipid-lowering effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altmann SW, Davis HR Jr, Zhu LJ, et al. Niemann-pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201–4.

    Article  CAS  PubMed  Google Scholar 

  2. Huff MW, Pollex RL, Hegele RA. NPC1L1: evolution from pharmacological target to physiological sterol transporter. Arterioscler Thromb Vasc Biol. 2006;26:2433–8.

    Article  CAS  PubMed  Google Scholar 

  3. Davies JP, Scott C, Oishi K, et al. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem. 2005;280:12710–20.

    Article  CAS  PubMed  Google Scholar 

  4. Davis HR Jr, Hoss LM, Tetzloff G, et al. Deficiency of Niemann-Pick C1 like 1 prevents atherosclerosis in apoE (-/-) mice. Arterioscler Thromb Vasc Biol. 2007;27:841–9.

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Calvo M, Lisnock J, Bull HG, et al. The target of ezetimibe is Niemann-Pick C1-like 1 (NPC1L1). Proc Natl Acad Sci U S A. 2005;102:8132–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ge L, Wang J, Qi W, et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 2008;7:508–19.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Chu BB, Ge L, et al. Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption. J Lipid Res. 2009;50:1653–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Weinglass AB, Kohler M, Schulte U, et al. Extracellular loop C of NPC1L1 is important for binding to ezetimibe. Proc Natl Acad Sci U S A. 2008;105:11140–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wang L-J, Song B-L. Niemann-Pick C1-like 1 and cholesterol uptake. Biochim Biophys Acta. 2012;1821:964–72.

    Article  CAS  PubMed  Google Scholar 

  10. Davis HR Jr, Compton DS, Hoos L, et al. Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in apoE knockout mice. Arterioscler Thromb Vasc Biol. 2001;21:2032–8.

    Article  CAS  PubMed  Google Scholar 

  11. Knopp RH, Dujovne CA, Le Beaut A, et al. Evaluation of the efficacy, safety, and tolerability of ezetimibe in primary hypercholesterolaemia: a pooled analysis from two controlled phase II clinical studies. Int J Clin Pract. 2003;57:363–8.

    CAS  PubMed  Google Scholar 

  12. Salen G, von Bergmann K, Lutjohann D, et al. Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation. 2004;109:966–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Tsubakio-Yamamoto K, Nishida M, Nakagawa-Toyama Y, et al. Current therapy for patients with sitosterolemia–effect of ezetimibe on plant sterol metabolism. J Atheroscler Thromb. 2010;17:891–900.

    Article  CAS  PubMed  Google Scholar 

  14. Mikhailidis DP, Lawson RW, McCormick AL, et al. Comparative efficacy of the addition of ezetimibe to statin vs statin titration in patients with hypercholesterolaemia: systematic review and meta-analysis. Curr Med Res Opin. 2011;27:1191–210.

    Article  CAS  PubMed  Google Scholar 

  15. Saito Y, Yamada N, Nakatani K, et al. Phase III clinical study of ezetimibe—double-blind comparative study with colestilan. J Clin Ther Med. 2007;23:493–522.

    Google Scholar 

  16. Masuda D, Nakagawa-Toyama Y, Nakatani K, et al. Ezetimibe improves postprandial hyperlipidaemia in patients with type IIb hyperlipidaemia. Eur J Clin Invest. 2009;39:689–98.

    Article  CAS  PubMed  Google Scholar 

  17. Sandoval JC, Nakagawa-Toyama Y, Masuda D, et al. Molecular mechanisms of ezetimibe-induced attenuation of postprandial hypertriglyceridemia. J Atheroscler Thromb. 2010;17:914–24.

    Article  CAS  PubMed  Google Scholar 

  18. Van Heek M, France CF, Compton DS, et al. In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH58235, in the rat and rhesus monkey through the identification of the active metabolites of SCH48461. J Pharmacol Exp Ther. 1997;283:157–63.

    CAS  PubMed  Google Scholar 

  19. Clader JW. The discovery of ezetimibe: a view from outside the receptor. J Med Chem. 2004;47:1–9.

    Article  CAS  PubMed  Google Scholar 

  20. Altmann SW, Davis HR Jr, Yao X, et al. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta. 2002;1580:77–93.

    Article  CAS  PubMed  Google Scholar 

  21. Iyer SP, Yao X, Crona JH, et al. Characterization of the putative native and recombinant rat sterol transporter Niemann-Pick C1 Like 1 (NPC1L1) protein. Biochim Biophys Acta. 2005;1722:282–92.

    Article  CAS  PubMed  Google Scholar 

  22. Tang W, Ma Y, Yu L. Plasma cholesterol is hyperresponsive to statin in ABCG5/ABCG8 transgenic mice. Hepatology. 2006;44:1259–66.

    Article  CAS  PubMed  Google Scholar 

  23. Telford DE, Sutherland BG, Edwards JY, et al. The molecular mechanisms underlying the reduction of LDL apoB-100 by ezetimibe plus simvastatin. J Lipid Res. 2007;48:699–708.

    Article  CAS  PubMed  Google Scholar 

  24. Davis HR Jr, Zhu LJ, Hoos LM, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem. 2004;279:33586–92.

    Article  CAS  PubMed  Google Scholar 

  25. Temel RE, Lee RG, Kelley KL, et al. Intestinal cholesterol absorption is substantially reduced in mice deficient in both ABCA1 and ACAT2. J Lipid Res. 2005;46:2423–31.

    Article  CAS  PubMed  Google Scholar 

  26. Liu R, Iqbal J, Yeang C, et al. Phospholipid transfer protein-deficient mice absorb less cholesterol. Arterioscler Thromb Vasc Biol. 2007;27:2014–21.

    Article  CAS  PubMed  Google Scholar 

  27. Tremblay AJ, Lamarche B, Lemelin V, et al. Atorvastatin increases intestinal expression of NPC1L1 in hyperlipidemic men. J Lipid Res. 2011;52:558–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Miettinen TA, Gylling H, Lindbohm N, et al. Serum noncholesterol sterols during inhibition of cholesterol synthesis by statins. J Lab Clin Med. 2003;141:131–7.

    Article  CAS  PubMed  Google Scholar 

  29. Lally S, Owens D, Tomkin GH. Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly: the relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism. 2007;56:430–8.

    Article  CAS  PubMed  Google Scholar 

  30. Duan LP, Wang HH, Ohashi A, et al. Role of intestinal sterol transporters Abcg5, Abcg8, and Npc1l1 in cholesterol absorption in mice: gender and age effects. Am J Physiol Gastrointest Liver Physiol. 2006;290:G269-76.

    Article  CAS  PubMed  Google Scholar 

  31. Davis HR, Altman SW. Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta. 2009;1791:679–83.

    Article  CAS  PubMed  Google Scholar 

  32. Cohen JC, Pertsemlidis A, Fahmi S, et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci U S A. 2006;103:1810–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Simon JS, Karnoub MC, Devlin DJ, et al. Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to ezetimibe treatment. Genomics. 2005;86:648–56.

    Article  CAS  PubMed  Google Scholar 

  34. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Pramfalk C, Jiang Z-Y, Parini P. Hepatic Niemann-Pick C1-like 1. Curr Opin Lipidol. 2011;22:225–30.

    Article  CAS  PubMed  Google Scholar 

  36. Temel RE, Tang W, Ma Y, et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest. 2007;117:1968–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Anderson RA, Joyce C, Davis M, et al. Identification of a form of acyl-CoA: cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J Biol Chem. 1998;273:26747–54.

    Article  CAS  PubMed  Google Scholar 

  38. Fujioka Y, Ishikawa Y. Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb. 2009;16:145–54.

    Article  CAS  PubMed  Google Scholar 

  39. Masuda D, Sakai N, Sugimoto T, et al. Fasting serum apolipoprotein B-48 can be a marker of postprandial hyperlipidemia. J Atheroscler Thromb. 2011;18:1062–70.

    Article  CAS  PubMed  Google Scholar 

  40. van Heek M, Farley C, Compton DS, et al. Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. Br J Pharmacol. 2000;129:1748–54.

    Article  PubMed Central  PubMed  Google Scholar 

  41. van Heek M, Compton DS, Davis HR. The cholesterol absorption inhibitor, ezetimibe, decreases diet-induced hypercholesterolemia in monkeys. Eur J Pharmacol. 2001;415:79–84.

    Article  CAS  PubMed  Google Scholar 

  42. Davis HR. Ezetimibe: first in a new class of cholesterol absorption inhibitors. International Congress Series, Atherosclerosis XIII. Proceedings of the 13th International Atherosclerosis Symposium, Edited by Matsuzawa Y, Kita T, Nagai R, and Teramoto T, Vol. 1262. Elsevier BV: Amsterdam; 2004. pp. 243–246

    Google Scholar 

  43. Weinglass AB, Kohler M, Schulte U, et al. Extracellular loop of NPC1L1 is important for binding to ezetimibe. Proc Natl Acad Sci U S A. 2008;105:11140–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sudhop T, Lutjohann D, Kodal A, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation. 2002;106:1943–8.

    Article  CAS  PubMed  Google Scholar 

  45. Dujovne CA, Ettinger MP, McNeer JF, et al. Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am J Cardiol. 2002;90:1092–7.

    Article  CAS  PubMed  Google Scholar 

  46. Knopp RH, Gitter H, Truitt T, et al. Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J. 2003;24:729–41.

    Article  CAS  PubMed  Google Scholar 

  47. Knopp RH, Dujovne CA, Le Beaut A, et al. Evaluation of the efficacy, safety, and tolerability of ezetimibe in primary hypercholesterolaemia: a pooled analysis from two controlled phase III clinical studies. Int J Clin Pract. 2003;57:363–8.

    CAS  PubMed  Google Scholar 

  48. Gagne C, Gaudet D, Bruckert E, et al. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation. 2002;105:2469–75.

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto A, Harada-Shiba M, Endo M, et al. The effect of ezetimibe on serum lipids and lipoproteins in patients with homozygous familial hypercholesterolemia undergoing LDL-apheresis therapy. Atherosclerosis. 2006;186:126–31.

    Article  CAS  PubMed  Google Scholar 

  50. Davis HR Jr, Tershakovec AM, Tomassini JE, et al. Intestinal sterol transporters and cholesterol absorption inhibition. Curr Opin Lipidol. 2011;22:467–78.

    Article  CAS  PubMed  Google Scholar 

  51. Pearson TA, Denke MA, et al. A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATP III goals for LDL cholesterol in hypercholesterolemic patients: the ezetimibe add-on to statin for effectiveness (EASE) trial. Mayo Clin Proc. 2005;80:587–95.

    Article  CAS  PubMed  Google Scholar 

  52. Sweeney ME, Johnson RR. Ezetimibe: an update on the mechanism of action, pharmacokinetics and recent clinical trials. Expert Opin Drug Metab Toxicol. 2007;3:441–50.

    Article  CAS  PubMed  Google Scholar 

  53. Tsunoda T, Nozue T, Yamada M, et al. Effects of ezetimibe on atherogenic lipoproteins and glucose metabolism in patients with diabetes and glucose intolerance. Diabetes Res Clin Pract. 2013;100:46–52.

    Article  CAS  PubMed  Google Scholar 

  54. Salen G, Starc T, Sisk CM, et al. Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia andxanthomatosis. Gastroenterology. 2006;130:1853–7.

    Article  PubMed  Google Scholar 

  55. Staprans I, Pan XM, Rapp JH, et al. Ezetimibe inhibits the incorporation of dietary oxidized cholesterol into lipoproteins. J Lipid Res. 2006;47:2575–80.

    Article  CAS  PubMed  Google Scholar 

  56. Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation. 1979;60:473–85.

    Article  CAS  PubMed  Google Scholar 

  57. Hiramitsu S, Miyagishima K, Ishii J, et al. The effect of ezetimibe on lipid and glucose metabolism after a fat and glucose load. J Cardiol. 2012;60:395–400.

    Article  PubMed  Google Scholar 

  58. Kikuchi K, Nezu U, Inazumi K, et al. Double-blind randomized clinical trial of the effects of ezetimibe on postprandial hyperlipidemia and hyperglycemia. J Atheroscler Thromb. 2012;19:1093–101.

    Article  CAS  PubMed  Google Scholar 

  59. Yunoki K, Nakamura K, Miyoshi T, et al. Ezetimibe improves postprandial hyperlipidemia and its induced endothelial dysfunction. Atherosclerosis. 2011;217:486–91.

    Article  CAS  PubMed  Google Scholar 

  60. Davis HR Jr, Lowe RS, Neff DR. Effects of ezetimibe on atherosclerosis in preclinical models. Atherosclerosis. 2011;215:266–78.

    Article  CAS  PubMed  Google Scholar 

  61. Dietrich T, Hucko T, Bourayou R, et al. High resolution magnetic resonance imaging in atherosclerotic mice treated with ezetimibe. Int J Cardiovasc Imaging. 2009;25:827–36.

    Article  PubMed  Google Scholar 

  62. Braun A, Yesilaltay A, Acton S, et al. Inhibition of intestinal absorption of cholesterol by ezetimibe or bile acids by SC-435 alters lipoprotein metabolism and extends the lifespan of SR-BI/apoE double knockout mice. Atherosclerosis. 2008;198:77–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bura KS, Lord C, Marshall S, et al. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Research. 2013;54:1567–77.

    Article  CAS  Google Scholar 

  64. Davis HR, Compton DS, Hoos LM, et al. Ezetimibe reduces plasma cholesterol and inhibits the development of atherosclerosis in apo E knockout mice with and without LDL receptors. Circulation. 2000;102(18; Suppl. S):186. [Abstract 899].

    Google Scholar 

  65. Park H, Shima T, Yamaguchi K, et al. Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease. J Gastroenterol. 2011;46:101–7.

    Article  CAS  PubMed  Google Scholar 

  66. Yoneda M, Fujita K, Imajo K, et al. Induction of microsomal triglyceride transfer protein expression is a candidate mechanism by which ezetimibe therapy might exert beneficial effects in patients with nonalcoholic steatohepatitis. J Gastroenterol. 2011;46:415–6.

    Article  PubMed  Google Scholar 

  67. Chan DC, Watts GF, Gan SK, et al. Effect of ezetimibe on hepatic fat, inflammatory markers, and apolipoprotein B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care. 2010;33:1134–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bays HE, Moore PB, Drehobl MA, et al. Effectiveness and tolerability of ezetimibe in patients with primary hypercholesterolemia: pooled analysis of two phase II studies. Clin Ther. 2001;23:1209–30.

    Article  CAS  PubMed  Google Scholar 

  69. Dujovne CA, Bays H, Davidson MH, et al. Reduction of LDL-C in patients with primary hypercholesterolemia by SCH 48461: results of a multicenter dose-ranging study. J Clin Pharmacol. 2001;41:70–8.

    Article  CAS  PubMed  Google Scholar 

  70. Baruch L, Gupta B, Lieberman-Blum SS, et al. Ezetimibe 5 and 10 mg for lowering LDL-C: potential billion-dollar savings with improved tolerability. Am J Manag Care. 2008;14:637–41.

    PubMed  Google Scholar 

  71. Toth PP, Catapano A, Tomassini JE, et al. Update on the efficacy and safety of combination ezetimibe plus statin therapy. Clin Lipidol. 2010;5:655–84.

    Article  CAS  Google Scholar 

  72. Kashani A, Sallam T, Bheemreddy S, et al. Review of side-effect profile of combination ezetimibe and statin therapy in randomized clinical trials. Am J Cardiol. 2008;101:1606–13.

    Article  CAS  PubMed  Google Scholar 

  73. Robinson JG, Davidson MH, Shah A, et al. Efficacy and safety of ezetimibe and ezetimibe + statin therapy in patients aged < 65, 65–74, and 75 years and older. Aging Health. 2007;3:691–705.

    Article  CAS  Google Scholar 

  74. Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Rossebø AB, Pedersen TR, Boman K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359:1343–56.

    Article  PubMed  Google Scholar 

  76. Peto R, Emberson J, Landray M, et al. Analyses of cancer data from three ezetimibe trials. N Engl J Med. 2008;359:1357–66.

    Article  CAS  PubMed  Google Scholar 

  77. Kastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med. 2008;358:1431–43.

    Article  CAS  PubMed  Google Scholar 

  78. Fleg JL, Mete M, Howard BV, et al. Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial. J Am Coll Cardiol. 2008;52:2198–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Cholesterol Treatment Trialists’ (CTT) Collaboration, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  Google Scholar 

  80. Villines TC, Stanek EJ, Devine PJ, et al. The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration. J Am Coll Cardiol. 2010;55:2721–6.

    Article  PubMed  Google Scholar 

  81. Cannon CP, Giugliano RP, Blazing MA, et al. Rationale and design of IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial): comparison of ezetimbe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes in patients with acute coronary syndromes. Am Heart J. 2008;156:826–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the excellent technical assistance and office work extended by Kaori Hizu-Shioyama, Risa Wada, and Kyoko Ozawa. This work was supported by a Grant-in-Aid for Scientific Research (No. 13671191) to S. Yamashita from the Japanese Ministry of Education, Science, Sports and Culture and in part by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO), Foundation for Biomedical Research and Innovation for Akifumi Matsuyama, Daisaku Masuda, Shizuya Yamashita.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuya Yamashita MD, PhD, FAHA, FJCC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Yamashita, S., Masuda, D., Matsuyama, A. (2015). Cholesterol Absorption Inhibitor Ezetimibe: Risk–Benefits and Role in Treating Dyslipidemias. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics