Skip to main content

Current and Future Engineering Strategies for ECMO Therapy

  • Chapter
  • First Online:
Engineering Translational Models of Lung Homeostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1413))

Abstract

Extracorporeal membrane oxygenation (ECMO) is a last resort therapy for patients with respiratory failure where the gas exchange capacity of the lung is compromised. Venous blood is pumped through an oxygenation unit outside of the body where oxygen diffusion into the blood takes place in parallel to carbon dioxide removal. ECMO is an expensive therapy which requires special expertise to perform. Since its inception, ECMO technologies have been evolving to improve its success and minimize the complications associated with it. These approaches aim for a more compatible circuit design capable of maximum gas exchange with minimal need for anticoagulants. This chapter summarizes the basic principles of ECMO therapy with the latest advancements and experimental strategies aiming for more efficient future designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patel, B., Chatterjee, S., Davignon, S. and Herlihy, J., (2019) Extracorporeal membrane oxygenation as rescue therapy for severe hypoxemic respiratory failure. Journal of Thoracic Disease, 11(S14), pp. S1688–S1697

    PubMed  PubMed Central  Google Scholar 

  2. Kilic A (2018) Extracorporeal Membrane Oxygenation. In: Vasan RS, Sawyer DB (eds) Encyclopedia of Cardiovascular Research and Medicine. Elsevier, Oxford, pp. 281–284

    Google Scholar 

  3. Bertini P, Guarracino F, Falcone M, Nardelli P, Landoni G, Nocci M, Paternoster G, (2022) ECMO in COVID-19 Patients: A Systematic Review and Meta-analysis. Journal of Cardiothoracic and Vascular Anesthesia 36:2700–2706.

    CAS  PubMed  Google Scholar 

  4. Bartlett, R., (2016) Physiology of Gas Exchange During ECMO for Respiratory Failure. Journal of Intensive Care Medicine, 32(4), pp. 243–248

    PubMed  Google Scholar 

  5. Maul, T. M., Massicotte, M. P., Wearden, P. D. (2016), ‘ECMO Biocompatibility: Surface Coatings, Anticoagulation, and Coagulation Monitoring’, in M. S. Firstenberg (ed.), Extracorporeal Membrane Oxygenation – Advances in Therapy, IntechOpen

    Google Scholar 

  6. Sniderman, J., Monagle, P., Annich, G. and MacLaren, G., 2020. Hematologic concerns in extracorporeal membrane oxygenation. Research and Practice in Thrombosis and Haemostasis, 4(4), pp. 455–468

    PubMed  PubMed Central  Google Scholar 

  7. Lehle K, Philipp A, Zeman F, Lunz D, Lubnow M, Wendel H-P, Göbölös L, Schmid C, Müller T (2015) Technical-Induced Hemolysis in Patients with Respiratory Failure Supported with Veno-Venous ECMO – Prevalence and Risk Factors. PLOS ONE 10:e0143527

    PubMed  PubMed Central  Google Scholar 

  8. Köhne, I., (2020) Haemolysis induced by mechanical circulatory support devices: unsolved problems. Perfusion, 35(6), 474–483

    PubMed  PubMed Central  Google Scholar 

  9. Vincent JL (2005) DO2/VO2 relationships. In: Pinsky MR, Payen D (eds) Functional Hemodynamic Monitoring. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 251–258

    Google Scholar 

  10. Zhang, M., Pauls, J., Bartnikowski, N., Haymet, A., Chan, C., Suen, J., Schneider, B., Ki, K., Whittaker, A., Dargusch, M. and Fraser, J., 2021. Anti-thrombogenic Surface Coatings for Extracorporeal Membrane Oxygenation: A Narrative Review. ACS Biomaterials Science & Engineering, 7(9), 4402–4419

    Google Scholar 

  11. Ontaneda, A. and Annich, G., (2018) Novel Surfaces in Extracorporeal Membrane Oxygenation Circuits. Frontiers in Medicine, 5

    Google Scholar 

  12. Walenga JM, Bick RL (1998) Heparin-Induced Thrombocytopenia, Paradoxical Thromboembolism, And Other Side Effects Of Heparin Therapy. Medical Clinics of North America 82:635–658.

    CAS  PubMed  Google Scholar 

  13. He T, He J, Wang Z, Cui Z (2021) Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). Advanced Composites and Hybrid Materials 4:847–864

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwasaki Y, Ishihara K (2012) Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Science and Technology of Advanced Materials 13:064101

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Watanabe J, Ishihara K (2008) Establishing ultimate biointerfaces covered with phosphorylcholine groups. Colloids and Surfaces B: Biointerfaces 65:155–165

    CAS  PubMed  Google Scholar 

  16. Vatani, A., Liao, S., Burrell, A., Carberry, J., Azimi, M., Steinseifer, U., Arens, J., Soria, J., Pellegrino, V., Kaye, D. and Gregory, S., (2021) Improved Drainage Cannula Design to Reduce Thrombosis in Veno-Arterial Extracorporeal Membrane Oxygenation. ASAIO Journal, Publish Ahead of Print.

    Google Scholar 

  17. Kim, J., Cho, Y., Sung, K., Park, T., Lee, G., Lee, J., Song, Y., Hahn, J., Choi, J., Choi, S., Gwon, H. and Yang, J., (2019) Impact of Cannula Size on Clinical Outcomes in Peripheral Venoarterial Extracorporeal Membrane Oxygenation. ASAIO Journal, 65(6), 573–579

    CAS  PubMed  Google Scholar 

  18. Strunina, S., Hozman, J. and Ostadal, P., 2018. The peripheral cannulas in extracorporeal life support. Biomedical Engineering / Biomedizinische Technik, 64(2), 127–133

    Google Scholar 

  19. Modine, T., Vincent, F., Delhaye, C. and Van Belle, E., (2020) A dedicated Y-shaped percutaneous ECMO cannula for femoral 2-in-1 vascular access during high-risk procedures. Catheterization and Cardiovascular Interventions, 97(5), 959–961

    PubMed  Google Scholar 

  20. Rehder KJ, Turner DA, Bonadonna D, Walczak RJ, Rudder RJ, Cheifetz IM (2012) Technological advances in extracorporeal membrane oxygenation for respiratory failure. Expert Review of Respiratory Medicine 6:377–384.

    CAS  PubMed  Google Scholar 

  21. Dalton HJ (2011) Extracorporeal Life Support: Moving at the Speed of Light. Respiratory Care 56:1445.

    PubMed  Google Scholar 

  22. Khan S, Vasavada R, Qiu F, Kunselman A, Ündar A (2011) Extracorporeal life support systems: alternative vs. conventional circuits. Perfusion 26:191–198.

    PubMed  Google Scholar 

  23. Evseev AK, Zhuravel SV, Alentiev A. Yu, Goroncharovskaya IV, Petrikov SS (2019) Membranes in Extracorporeal Blood Oxygenation Technology. Membranes and Membrane Technologies 1:201–211.

    CAS  Google Scholar 

  24. Yeager T, Roy S (2017) Evolution of Gas Permeable Membranes for Extracorporeal Membrane Oxygenation. Artificial Organs 41:700–709.

    CAS  PubMed  Google Scholar 

  25. Lehle K, Philipp A, Gleich O, Holzamer A, Müller T, Bein T, Schmid C (2008) Efficiency in Extracorporeal Membrane Oxygenation—Cellular Deposits on Polymethypentene Membranes Increase Resistance to Blood Flow and Reduce Gas Exchange Capacity. ASAIO Journal 54:612–617

    CAS  PubMed  Google Scholar 

  26. Biran R, Pond D (2017) Heparin coatings for improving blood compatibility of medical devices. Advanced Drug Delivery Reviews 112:12–23.

    CAS  PubMed  Google Scholar 

  27. Olson SR, Murphree CR, Zonies D, Meyer AD, Mccarty OJT, Deloughery TG, Shatzel JJ (2021) Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) Without Anticoagulation: A Systematic Review. ASAIO Journal 67: 290–296

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishinaka T, Tatsumi E, Taenaka Y, Katagiri N, Ohnishi H, Shioya K, Fukuda T, Oshikawa M, Sato K, Tsukiya T, Homma A, Takewa Y, Takano H, Sato M, Kashiwabara S, Tanaka H, Sakai K, Matsuda T (2002) At Least Thirty-Four Days of Animal Continuous Perfusion by a Newly Developed Extracorporeal Membrane Oxygenation System without Systemic Anticoagulants. Artificial Organs 26:548–551

    CAS  PubMed  Google Scholar 

  29. Nishinaka T, Tatsumi E, Katagiri N, Ohnishi H, Mizuno T, Shioya K, Tsukiya T, Homma A, Kashiwabara S, Tanaka H, Sato M, Taenaka Y (2007) Up to 151 days of continuous animal perfusion with trivial heparin infusion by the application of a long-term durable antithrombogenic coating to a combination of a seal-less centrifugal pump and a diffusion membrane oxygenator. Journal of Artificial Organs 10:240–244.

    CAS  PubMed  Google Scholar 

  30. Zhang M, Chan CHH, Pauls JP, Semenzin C, Ainola C, Peng H, Fu C, Whittaker AK, Heinsar S, Fraser JF (2022) Investigation of heparin-loaded poly(ethylene glycol)-based hydrogels as anti-thrombogenic surface coatings for extracorporeal membrane oxygenation. Journal of Materials Chemistry B.

    Google Scholar 

  31. Wang W, Zheng Z, Huang X, Fan W, Yu W, Zhang Z, Li L, Mao C (2017) Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification. Journal of Biomedical Materials Research Part B: Applied Biomaterials 105:1737–1746.

    CAS  PubMed  Google Scholar 

  32. Abednejad AS, Amoabediny G, Ghaee A (2013) Surface Modification of Polypropylene Blood Oxygenator Membrane by Poly Ethylene Glycol Grafting. Advanced Materials Research 816–817:459–463.

    Google Scholar 

  33. Hamilos, M., Petousis, S. and Parthenakis, F., (2018) Interaction between platelets and endothelium: from pathophysiology to new therapeutic options. Cardiovascular Diagnosis and Therapy, 8(5), pp. 568–580

    PubMed  PubMed Central  Google Scholar 

  34. Jeakle MM, Major TC, Meyerhoff ME, Bartlett RH (2020) Comparison of Diazeniumdiolated Dialkylhexanediamines as Nitric Oxide Release Agents on Nonthrombogenicity in an Extracorporeal Circulation Model. ACS Applied Bio Materials 3:466–476.

    CAS  PubMed  Google Scholar 

  35. Brisbois EJ, Handa H, Major TC, Bartlett RH, Meyerhoff ME (2013) Long-term nitric oxide release and elevated temperature stability with S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As polymer. Biomaterials 34:6957–6966.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hopkins SP, Pant J, Goudie MJ, Schmiedt C, Handa H (2018) Achieving Long-Term Biocompatible Silicone via Covalently Immobilized S-Nitroso-N-acetylpenicillamine (SNAP) That Exhibits 4 Months of Sustained Nitric Oxide Release. ACS Applied Materials & Interfaces 10:27316–27325.

    CAS  Google Scholar 

  37. Major TC, Brant DO, Burney CP, Amoako KA, Annich GM, Meyerhoff ME, Handa H, Bartlett RH (2011) The hemocompatibility of a nitric oxide generating polymer that catalyzes S-nitrosothiol decomposition in an extracorporeal circulation model. Biomaterials 32:5957–5969.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y-B, Gong M, Yang S, Nakashima K, Gong Y-K (2014) Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane. Journal of Membrane Science 452:29–36.

    CAS  Google Scholar 

  39. Ye S-H, Arazawa DT, Zhu Y, Shankarraman V, Malkin AD, Kimmel JD, Gamble LJ, Ishihara K, Federspiel WJ, Wagner WR (2015) Hollow Fiber Membrane Modification with Functional Zwitterionic Macromolecules for Improved Thromboresistance in Artificial Lungs. Langmuir 31:2463–2471.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang X, Wang W, Zheng Z, Fan W, Mao C, Shi J, Li L (2016) Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators. Applied Surface Science 362:355–363.

    CAS  Google Scholar 

  41. Malkin AD, Ye S-H, Lee EJ, Yang X, Zhu Y, Gamble LJ, Federspiel WJ, Wagner WR (2018) Development of zwitterionic sulfobetaine block copolymer conjugation strategies for reduced platelet deposition in respiratory assist devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials 106:2681–2692.

    CAS  PubMed  Google Scholar 

  42. Ukita R, Wu K, Lin X, Carleton NM, Naito N, Lai A, Do-Nguyen CC, Demarest CT, Jiang S, Cook KE (2019) Zwitterionic poly-carboxybetaine coating reduces artificial lung thrombosis in sheep and rabbits. Acta Biomaterialia 92:71–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Goh, E., Wong, E., Farhatnia, Y., Tan, A. and Seifalian, A., (2014) Accelerating in Situ Endothelialisation of Cardiovascular Bypass Grafts. International Journal of Molecular Sciences, 16(1), pp. 597–627

    PubMed  PubMed Central  Google Scholar 

  44. Klein S, Hesselmann F, Djeljadini S, Berger T, Thiebes AL, Schmitz-Rode T, Jockenhoevel S, Cornelissen CG (2020) EndOxy: Dynamic Long-Term Evaluation of Endothelialized Gas Exchange Membranes for a Biohybrid Lung. Annals of Biomedical Engineering 48:747–756.

    PubMed  Google Scholar 

  45. Hellmann A, Klein S, Hesselmann F, Djeljadini S, Schmitz-Rode T, Jockenhoevel S, Cornelissen CG, Thiebes AL (2020) EndOxy: Mid-term stability and shear stress resistance of endothelial cells on PDMS gas exchange membranes. Artificial Organs 44:E419–E433.

    CAS  PubMed  Google Scholar 

  46. Pflaum, M., Dahlmann, J., Engels, L., Naghilouy-Hidaji, H., Adam, D., Zöllner, J., Otto, A., Schmeckebier, S., Martin, U., Haverich, A., Olmer, R. and Wiegmann, B., (2021) Towards Biohybrid Lung: Induced Pluripotent Stem Cell Derived Endothelial Cells as Clinically Relevant Cell Source for Biologization. Micromachines, 12:981

    PubMed  PubMed Central  Google Scholar 

  47. Pflaum M, Kühn-Kauffeldt M, Schmeckebier S, Dipresa D, Chauhan K, Wiegmann B, Haug RJ, Schein J, Haverich A, Korossis S (2017) Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung. Acta Biomaterialia 50:510–521.

    CAS  PubMed  Google Scholar 

  48. Liu, T., Liu, S., Zhang, K., Chen, J. and Huang, N., (2013) Endothelialization of implanted cardiovascular biomaterial surfaces: The development from in vitro to in vivo Journal of Biomedical Materials Research Part A, 102(10), pp. 3754–3772

    PubMed  Google Scholar 

  49. Pang, J., Farhatnia, Y., Godarzi, F., Tan, A., Rajadas, J., Cousins, B. and Seifalian, A., (2015) In situ Endothelialization: Bioengineering Considerations to Translation. Small, 11(47), pp. 6248–6264

    CAS  PubMed  Google Scholar 

  50. Astor TL, Borenstein JT (2022) The microfluidic artificial lung: Mimicking nature’s blood path design to solve the biocompatibility paradox. Artificial Organs 46:1227–1239.

    PubMed  Google Scholar 

  51. Lachaux J, Hwang G, Arouche N, Naserian S, Harouri A, Lotito V, Casari C, Lok T, Menager JB, Issard J, Guihaire J, Denis CV, Lenting PJ, Barakat AI, Uzan G, Mercier O, Haghiri-Gosnet A-M (2021) A compact integrated microfluidic oxygenator with high gas exchange efficiency and compatibility for long-lasting endothelialization. Lab on a Chip 21:4791–4804.

    CAS  PubMed  Google Scholar 

  52. Santos JA, Gimbel AA, Peppas A, Truslow JG, Lang DA, Sukavaneshvar S, Solt D, Mulhern TJ, Markoski A, Kim ES, Hsiao JC-M, Lewis DJ, Harjes DI, DiBiasio C, Charest JL, Borenstein JT (2021) Design and construction of three-dimensional physiologically-based vascular branching networks for respiratory assist devices. Lab on a Chip 21:4637–4651.

    CAS  PubMed  Google Scholar 

  53. Santos, J., Vedula, E., Lai, W., Isenberg, B., Lewis, D., Lang, D., Sutherland, D., Roberts, T., Harea, G., Wells, C., Teece, B., Karandikar, P., Urban, J., Risoleo, T., Gimbel, A., Solt, D., Leazer, S., Chung, K., Sukavaneshvar, S., Batchinsky, A. and Borenstein, J., (2021) Toward Development of a Higher Flow Rate Hemocompatible Biomimetic Microfluidic Blood Oxygenator. Micromachines, 12(8), p. 888

    PubMed  PubMed Central  Google Scholar 

  54. Dabaghi M, Saraei N, Fusch G, Rochow N, Brash JL, Fusch C, Ravi Selvaganapathy P (2019) An ultra-thin, all PDMS-based microfluidic lung assist device with high oxygenation capacity. Biomicrofluidics 13:034116.

    PubMed  PubMed Central  Google Scholar 

  55. Kniazeva T, Hsiao JC, Charest JL, Borenstein JT (2011) A microfluidic respiratory assist device with high gas permeance for artificial lung applications. Biomedical Microdevices 13:315–323.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bölükbas, D.A., Tas, S. (2023). Current and Future Engineering Strategies for ECMO Therapy. In: Magin, C.M. (eds) Engineering Translational Models of Lung Homeostasis and Disease. Advances in Experimental Medicine and Biology, vol 1413. Springer, Cham. https://doi.org/10.1007/978-3-031-26625-6_16

Download citation

Publish with us

Policies and ethics