Skip to main content

Types of Extracorporeal Life Support and Evolution of Extracorporeal Oxygenators

  • Chapter
  • First Online:
Extracorporeal life support

Abstract

Extracorporeal membrane oxygenation (ECMO), a form of extracorporeal life support (ECLS), is a direct extension of cardiopulmonary bypass technology used for providing support to patient with cardiorespiratory failure despite maximum conventional therapy. For over 50 years, extracorporeal membrane oxygenation support remained much the same technically; the deoxygenated blood drained from the patient via an outflow cannula gets oxygenated, with the accompanying removal of carbon dioxide, before the blood is returned back to the patient through an inflow cannula. One of the remarkable milestone changes seen in ECLS was the revolutionized improvement of the functional durability of extracorporeal oxygenators from the prototype bubble and film-surface-type oxygenators to today’s non-microporous membrane oxygenators. It would have been impossible to have a long-term ECMO support application if not for the decades of perseverance and painstaking efforts of scientists, pioneer heart surgeons, material sciences experts, and industrial experts in search of high-performance extracorporeal oxygenators. Today, with the technological advancement in pump consoles, pump heads, tubing surface coating, oxygenators, and cannula, coupled with collective knowledge and experience in ECMO, the usage of the ECMO in critical care has been heightened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galletti PM, Mora CT. Cardiopulmonary bypass: the historical foundation, the future promise. In: Mora CT, Guyton RA, Finlayson DC, Rigatti RL, editors. Cardiopulmonary bypass. New York: Springer; 1995. p. 3–18.

    Chapter  Google Scholar 

  2. Gibbon JH. Personal recollections of the earliest years of the development of the heart-lung machine. J Extra Corpor Technol. 1978;10(2):77–88.

    Google Scholar 

  3. Sinard JM, Bartlett RH. Extracorporeal membrane oxygenation (ECMO): prolonged bedside cardiopulmonary bypass. Perfusion. 1990;5(4):239–49.

    Article  CAS  PubMed  Google Scholar 

  4. Lim MW. The history of extracorporeal oxygenators. Anaesthesia. 2006;61(10):984–95.

    Article  CAS  PubMed  Google Scholar 

  5. Cassie AB, Riddell AG, Yates PO. Hazard of antifoam emboli from a bubble oxygenator. Thorax. 1960;15(1):22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lillehei CW, Cohen M, Warden HE, Varco RL. The direct-vision intracardiac correction of congenital anomalies by controlled cross circulation; results in thirty-two patients with ventricular septal defects, tetralogy of Fallot, and atrioventricularis communis defects. Surgery. 1955;38(1):11–29.

    CAS  PubMed  Google Scholar 

  7. Lillehei CW, DewallL RA, Read RC, Warden HE, Varco RL. Direct vision intracardiac surgery in man using a simple, disposable artificial oxygenator. Dis Chest. 1956;29(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas VB, Laurance L, Roberto L, Graeme M, Giles P. Extracorpereal life support: the ELSO red book: the history of ECMO: first hand accounts. 5th ed. Ann Arbor, MI: ELSO; 2017. p. 18–9.

    Google Scholar 

  9. Baffes TG, Fridman JL, Bicoff JP, Whitehill JL. Extracorporeal circulation for support of palliative cardiac surgery in infants. Ann Thorac Surg. 1970;10(4):354–63.

    Article  CAS  PubMed  Google Scholar 

  10. Tan VE, Evangelista AT, Carella DM, et al. Sterility duration of preprimed extracorporeal membrane oxygenation circuits. J Pediatr Pharmacol Ther. 2018;23(4):311–4.

    PubMed  PubMed Central  Google Scholar 

  11. Evseev A, Zhuravel S, Alentiev A, Goroncharovskaya I, Petrikov S. Membranes in extracorporeal blood oxygenation technology. Membr Membr Technol. 2019;1:201–11.

    Article  CAS  Google Scholar 

  12. Kolff WJ, Berk HT, ter Welle M, van der LEY AJ, van Dijk EC, van Noordwijk J. The artificial kidney: a dialyser with a great area. 1944. J Am Soc Nephrol. 1997;8(12):1959–65.

    Article  CAS  PubMed  Google Scholar 

  13. Kloff WJ, Balzer R. The artificial coil lung. Trans Am Soc Artif Intern Organs. 1955;1:39–42.

    Google Scholar 

  14. Kolobow T, Bowman RL. Construction and evaluation of an alveolar membrane artificial heart-lung. Trans Am Soc Artif Intern Organs. 1963;9:238–43.

    CAS  PubMed  Google Scholar 

  15. Toomasian JM, Schreiner RJ, Meyer DE, et al. A polymethylpentene fiber gas exchanger for long-term extracorporeal life support [published correction appears in ASAIO J. 2008 Jan-Feb;54(1):137]. ASAIO J. 2005;51(4):390–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hill JD, O’Brien TG, Murray JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 1972;286(12):629–34.

    Article  CAS  PubMed  Google Scholar 

  17. Bartlett RH, Gazzaniga AB, Jefferies MR, Huxtable RF, Haiduc NJ, Fong SW. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. Trans Am Soc Artif Intern Organs. 1976;22:80–93.

    CAS  PubMed  Google Scholar 

  18. Yeager T, Roy S. Evolution of gas permeable membranes for extracorporeal membrane oxygenation. Artif Organs. 2017;41(8):700–9.

    Article  CAS  PubMed  Google Scholar 

  19. McCaughan J, Weeder R, Schuder J, Blakemore W. Evaluation of new nonwettable macroporous membranes with high permeability coefficients for possible use in a membrane oxygenator. J Thorac Cardiovasc Surg. 1960;40:574–81.

    Article  Google Scholar 

  20. Suma K, Tsuji T, Takeuchi Y, et al. Clinical performance of microporous polypropylene hollow-fiber oxygenator. Ann Thorac Surg. 1981;32(6):558–62.

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Jang T, Kwon Y, Kim U, Kim S. Structural study of microporous polypropylene hollow fiber membranes made by the melt-spinning and cold-stretching method. J Memb Sci. 1994;93:209–15.

    Article  CAS  Google Scholar 

  22. Leonard RJ. The transition from the bubble oxygenator to the microporous membrane oxygenator. Perfusion. 2003;18(3):179–83.

    Article  PubMed  Google Scholar 

  23. Gaylor JD. Membrane oxygenators: current developments in design and application. J Biomed Eng. 1988;10(6):541–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hurt R. The technique and scope of open-heart surgery. Postgrad Med J. 1967;43(504):668–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montoya JP, Shanley CJ, Merz SI, Bartlett RH. Plasma leakage through microporous membranes. Role of phospholipids. ASAIO J. 1992;38(3):M399–405.

    Article  CAS  PubMed  Google Scholar 

  26. Tamari Y, Tortolani AJ, Maquine M, Lee-Sensiba K, Guarino J. The effect of high pressure on microporous membrane oxygenator failure. Artif Organs. 1991;15(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  27. Peek GJ, Killer HM, Reeves R, Sosnowski AW, Firmin RK. Early experience with a polymethyl pentene oxygenator for adult extracorporeal life support. ASAIO J. 2002;48(5):480–2.

    Article  CAS  PubMed  Google Scholar 

  28. Strueber M. Artificial lungs: are we there yet? Thorac Surg Clin. 2015;25(1):107–13.

    Article  PubMed  Google Scholar 

  29. Khoshbin E, Roberts N, Harvey C, et al. Poly-methyl pentene oxygenators have improved gas exchange capability and reduced transfusion requirements in adult extracorporeal membrane oxygenation. ASAIO J. 2005;51(3):281–7.

    Article  CAS  PubMed  Google Scholar 

  30. Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators, Davies A, Jones D, et al. Extracorporeal membrane oxygenation for 2009 influenza a(H1N1) acute respiratory distress syndrome. JAMA. 2009;302(17):1888–95.

    Article  Google Scholar 

  31. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial [published correction appears in Lancet. 2009 Oct 17;374(9698):1330]. Lancet. 2009;374(9698):1351–63.

    Article  PubMed  Google Scholar 

  32. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.

    Article  PubMed  Google Scholar 

  33. Thiagarajan RR, Barbaro RP, Rycus PT, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63(1):60–7.

    Article  PubMed  Google Scholar 

  34. Sidebotham D, Allen SJ, McGeorge A, Ibbott N, Willcox T. Venovenous extracorporeal membrane oxygenation in adults: practical aspects of circuits, cannulae, and procedures. J Cardiothorac Vasc Anesth. 2012;26(5):893–909.

    Article  PubMed  Google Scholar 

  35. Suchyta MR, Clemmer TP, Orme JF Jr, Morris AH, Elliott CG. Increased survival of ARDS patients with severe hypoxemia (ECMO criteria). Chest. 1991;99(4):951–5.

    Article  CAS  PubMed  Google Scholar 

  36. Cara Agerstrand M (2018) ECMO for ARDS in the modern era. Chest Physician. https://www.mdedge.com/chestphysician/article/175257/pulmonology/ecmo-ards-modern-era

  37. Abrams D, Bacchetta M, Brodie D. Recirculation in venovenous extracorporeal membrane oxygenation. ASAIO J. 2015;61(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  38. Conrad SA, Broman LM, Taccone FS, et al. The extracorporeal life support organization Maastricht treaty for nomenclature in extracorporeal life support. A position paper of the extracorporeal life support organization. Am J Respir Crit Care Med. 2018;198(4):447–51.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jayaraman AL, Cormican D, Shah P, Ramakrishna H. Cannulation strategies in adult veno-arterial and veno-venous extracorporeal membrane oxygenation: techniques, limitations, and special considerations. Ann Card Anaesth. 2017;20(Supplement):S11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rubino A, Vuylsteke A, Jenkins DP, Fowles JA, Hockings L, Valchanov K. Direct complications of the Avalon bicaval dual-lumen cannula in respiratory extracorporeal membrane oxygenation (ECMO): single-center experience. Int J Artif Organs. 2014;37(10):741–7.

    Article  PubMed  Google Scholar 

  41. Mazzeffi M, Kon Z, Menaker J, et al. Large dual-lumen extracorporeal membrane oxygenation cannulas are associated with more intracranial hemorrhage. ASAIO J. 2019;65(7):674–7.

    Article  PubMed  Google Scholar 

  42. Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.

    Article  PubMed  Google Scholar 

  43. Romero-Bermejo FJ, Ruiz-Bailen M, Gil-Cebrian J, Huertos-Ranchal MJ. Sepsis-induced cardiomyopathy. Curr Cardiol Rev. 2011;7(3):163–83.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bunge JJH, Caliskan K, Gommers D, Reis MD. Right ventricular dysfunction during acute respiratory distress syndrome and veno-venous extracorporeal membrane oxygenation. J Thorac Dis. 2018;10(Suppl 5):S674–82.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jung C, Janssen K, Kaluza M, et al. Outcome predictors in cardiopulmonary resuscitation facilitated by extracorporeal membrane oxygenation. Clin Res Cardiol. 2016;105(3):196–205.

    Article  CAS  PubMed  Google Scholar 

  46. Rastan AJ, Dege A, Mohr M, et al. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. J Thorac Cardiovasc Surg. 2010;139(2):302–311.e1.

    Article  PubMed  Google Scholar 

  47. Camboni D, Philip A, Schmid C, Loforte A. Double, triple and quadruple cannulation for veno-arterial extracorporeal membrane oxygenation support: is there a limit? Ann Cardiothorac Surg. 2019;8(1):151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wengenmayer T, Rombach S, Ramshorn F, et al. Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR). Crit Care. 2017;21(1):157.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Werner NL, Coughlin M, Cooley E, et al. The University of Michigan experience with veno-venoarterial hybrid mode of extracorporeal membrane oxygenation. ASAIO J. 2016;62(5):578–83.

    Article  CAS  PubMed  Google Scholar 

  50. Spurlock DJ, Toomasian JM, Romano MA, Cooley E, Bartlett RH, Haft JW. A simple technique to prevent limb ischemia during veno-arterial ECMO using the femoral artery: the posterior tibial approach. Perfusion. 2012;27(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  51. Donker DW, Brodie D, Henriques JPS, Broomé M. Left ventricular unloading during veno-arterial ECMO: a simulation study. ASAIO J. 2019;65(1):11–20.

    Article  PubMed  Google Scholar 

  52. Napp LC, Kühn C, Hoeper MM, et al. Cannulation strategies for percutaneous extracorporeal membrane oxygenation in adults. Clin Res Cardiol. 2016;105(4):283–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ong Geok Seen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seen, O.G., Chay-Nancy, H.S., Lim, C.A., Clement, C.K.H., Guim, G.S. (2023). Types of Extracorporeal Life Support and Evolution of Extracorporeal Oxygenators. In: Hei, F., Guan, Y., Yu, K. (eds) Extracorporeal life support. Springer, Singapore. https://doi.org/10.1007/978-981-19-9275-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9275-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9274-2

  • Online ISBN: 978-981-19-9275-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics