Skip to main content

Sturm-Liouville Transformation

  • Chapter
  • First Online:
Multidimensional Signals and Systems

Abstract

This chapter revisits the topic of multidimensional transformations and applies it to initial-boundary-value problems. Some basic notions are first discussed by an introductory example. Then the spatial differentiation operators involved in initial-boundary-value problems are investigated further as a prerequisite to the introduction of a suitable spatial transformation, the Sturm-Liouville transformation. The corresponding operations in the space domain are described by Green’s functions and the corresponding propagator. This transformation derived for initial-boundary-value problems with constant coefficients is extended to space-dependent coefficients. The chapter closes which some classical Sturm-Liouville problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Jacques Charles François Sturm (1803–1855), Joseph Liouville (1809–1882)

References

  1. Rabenstein, R., Schäfer, M.: Multidimensional Signals and Systems: Applications. Springer Nature, Heidelberg, Berlin (to appear)

    Google Scholar 

  2. Al-Gwaiz, M.: Sturm-Liouville Theory and its Applications. Springer-Verlag, London, UK (2008)

    MATH  Google Scholar 

  3. Amrein, W.O., Hinz, A.M., Pearson, D.B. (eds.): Sturm-Liouville Theory Past and Present. Birkhäuser Verlag, Basel, Switzerland (2005)

    Google Scholar 

  4. Antonini, G.: Spectral models of lossy nonuniform multiconductor transmission lines. IEEE Transactions on Electromagnetic Compatibility 54(2), 474–481 (2012).https://doi.org/10.1109/TEMC.2011.2167015

    Article  Google Scholar 

  5. Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists, 7 edn. Academic Press, Waltham, USA (2013)

    MATH  Google Scholar 

  6. Butkovskiy, A.: Structural Theory of Distributed Systems. Ellis Horwood Ltd., Chichester, England (1983)

    Google Scholar 

  7. Chou, C.Y., Hong, B.S., Chiang, P.J., Wang, W.T., Chen, L.K., Lee, C.Y.: Distributed control of heat conduction in thermal inductive materials with 2d geometrical isomorphism. Entropy 16(9), 4937–4959 (2014). http://dx.doi.org/10.3390/e16094937

    Article  Google Scholar 

  8. Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bulletin of the American Mathematical Society 38(2), 273–291 (2001). https://doi.org/10.1090/S0273-0979-01-00903-X

    Article  MathSciNet  MATH  Google Scholar 

  9. Christensen, O.: An Introduction to Frames and Riesz Bases, 2 edn. Birkhäuser, Basel, Switzerland (2016)

    Google Scholar 

  10. Chui, C.K.: An Introduction to Wavelets. Academic Press, San Diego, USA (1992)

    MATH  Google Scholar 

  11. Churchill, R.V.: Operational Mathematics, 3 edn. Mc Graw Hill, Boston, Massachusetts (1972)

    Google Scholar 

  12. Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vol. 1, 1st english edn. Wiley, New York (1989,1937). https://onlinelibrary.wiley.com/doi/book/10.1002/9783527617210

  13. Curtain, R., Zwart, H.: An Introduction to Infinite-Dimensional Systems Theory. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  14. Deutscher, J.: Zustandsregelung verteilt-parametrischer Systeme. Springer, Berlin (2012)

    Book  Google Scholar 

  15. Dymkou, S.M., Dymkou, V.M., Dymkov, M.P.: Multifunctional transformation method in flow modeling. IFAC Proceedings Volumes 47(3), 7013–7018 (2014). https://doi.org/10.3182/20140824-6-ZA-1003.00777. http://www.sciencedirect.com/science/article/pii/S1474667016427163. 19th IFAC World Congress

  16. Dymkou, V., Pothérat, A.: Spectral methods based on the least dissipative modes for wall bounded mhd flows. Theoretical and Computational Fluid Dynamics 23(6), 535–555 (2009). https://doi.org/10.1007/s00162-009-0159-9

    Article  MATH  Google Scholar 

  17. Dymkou, V., Rabenstein, R., Steffen, P.: Discrete simulation of a class of distributed systems using functional analytic methods. Multidimensional Systems and Signal Processing 17(2), 177–209 (2006). https://doi.org/10.1007/s11045-005-6234-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Eringen, C.: The finite Sturm-Liouville-transform. The Quarterly Journal of Mathematics, Oxford Second Series 5, 120–129 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. Franke, D.: Systeme mit örtlich verteilten Parametern. Eine Einführung in die Modellbildung, Analyse und Regelung. Hochschultext. Springer, Berlin u.a. (1987)

    Google Scholar 

  20. Gilles, E.: Systeme mit verteilten Parametern: Einf. in d. Regelungstheorie. Methoden der Regelungstechnik. Oldenbourg (1973)

    Google Scholar 

  21. Hong, B.S.: Realization of inhomogeneous boundary conditions as virtual sources in parabolic and hyperbolic dynamics. Applied and Computational Mathematics 3(5), 197–204 (2014). doi: 10.11648/j.acm.20140305.12

  22. Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, Germany (1976)

    MATH  Google Scholar 

  23. Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier, Amsterdam (2009)

    MATH  Google Scholar 

  24. Pryce, J.D.: Numerical Solution of Sturm-Liouville Problems. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  25. Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering: A Comprehensive Guide, 3 edn. Cambridge University Press, Cambridge, UK (2006)

    Book  MATH  Google Scholar 

  26. Trautmann, L., Rabenstein, R.: Digital Sound Synthesis by Physical Modeling of Musical Instruments using Functional Transformation Models. Kluwer Academic/Plenum Publishers, Boston, USA (2003)

    MATH  Google Scholar 

  27. Zettl, A.: Sturm-Liouville Theory. American Mathematical Society (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabenstein, R., Schäfer, M. (2023). Sturm-Liouville Transformation. In: Multidimensional Signals and Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-26514-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26514-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26513-6

  • Online ISBN: 978-3-031-26514-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics